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This paper deals with the development and software implementation of the hybrid multi-memetic
algorithm for distributed computing systems. The main algorithm is based on the modification of
MEC algorithm proposed by the authors. The multi-memetic algorithm utilizes three various local
optimization methods. Software implementation was developed using MPI for Python and tested on a
grid network made of twenty desktop computers. Performance of the proposed algorithm and its
software implementation was investigated using multi-dimensional multi-modal benchmark functions
from CEC’14.
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1. Introduction

Solving complex optimization problems in the field of engineering design is quite often
coupled with large computational expenses. Nowadays, one of the most promising approaches to
increasing the efficiency of methods for dealing with this type of problems are distributed com-
putations. Several desktop computers connected into a parallel computing system are often used
as a part of such framework. The advantage of this type of networks is that their capacity can be
increased literally with no limit by means of scaling [1, 2].

However, in order to make such calculations possible one needs a special software imple-
mentation which would be based on a data exchange interface. In this work MPI was utilized as
one of the most widely used interfaces, designed for loosely coupled systems. At the same time,
it wouldn't be enough just to increase the amount of computational resources for obtaining high-
quality solutions to optimization problems. A development of specialized algorithms which
would be based on the features of particular parallel systems is required in order to increase the
efficiency of methods.

Nowadays, population algorithms are used most frequently for solving global optimization
problems. The main idea of such algorithms is based on the modeling of a collective behavior of
self-organizing living and nonliving systems. Population algorithms allow one to process several
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solutions independently in parallel. Subsequently, the main advantage of this type of algorithms
is their decentralization and elegancy of parallelization [3, 4].

Among main parallelization models for population algorithms one can highlight a global
model, an island model, a diffusion model and other hybrid models. In this paper an island model
was utilized as it takes into account a low carrying capacity of communication network of desk-
top computers. In the meantime, if one speaks about loosely coupled systems where communica-
tion between subpopulations is absent it's appropriate to use a special case of an island model
called a model of noncommuting population [5].

In order to increase performance of the specified global optimization methods researchers
use either hybridization or meta-optimization. A development of hybrid algorithms implies a
combination of various or same methods with different values of free parameters in such a way
that advantages of one method would overcome disadvantages of another one. Meta-
optimization, on the other hand, implies the adjustment of free parameters' values that would
provide the maximum efficiency of an algorithm being investigated.

In the recent times, so called memetic algorithms, MAs became widely popular. They rep-
resent hybrid population-based meta-heuristic global optimization algorithms based on the con-
cept of a meme. In this context, a meme represents any local optimization method, which im-
proves a current solution at the particular stages of the main algorithm. Generally, memetic algo-
rithms are hybridization of a population method and one or several local optimization methods
[6, 71.

There are many various hybridization methods for optimization algorithms and, in particu-
lar, for population-based methods. One of the most widely used classification of such methods is
a one-level classification proposed by Wang [3]. In accordance with this classification there are
three groups of hybrid algorithms: embedded algorithms, preprocessor/postprocessor algorithms
and coalgorithms. The first category can be also divided into two subgroups: high-level and low-
level hybridization. In this work a high-level embedded hybridization was utilized; this suggests
a weak connection between algorithms being combined.

Memetic algorithms are a very good example of such hybridization scheme, their distinct
feature is a significant autonomy of utilized algorithms. A structure of MASs provides researchers
with a lot of different opportunities for developing their modifications which could differ from
one another, for instance, by the frequency of local search appliance, its termination criteria and
other parameters.

Modification of MAs that are most frequently used in practice implies a simultaneous us-
age of various memes and called multi-memetic algorithms [8]. The goal of this work is devel-
opment and software implementation of a parallel multi-memetic algorithm for loosely coupled
computing systems as well as the investigation of its performance with a use of several bench-
mark optimization functions.

2 Problem statement

In this paper a multi-dimensional global constrained minimization is considered [3]
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min |F(X)=F(X*)=F*, (1)

X€eDCRIX

where set D is determined with inequality constraints
D= {X|x; < x; < xi,i €[LIX]]}. )

Here F(X) — the objective function being minimized and defined in every point of search
domain D, F(X*) = F* — the desired minimum value of the objective function F(X), X — a vec-
tor of variables, X* — the desired vector of variables, wherein the objective function takes up its
minimal value, |X| — the dimension of vector X: X = (x;, X, ..., X|x|)-

3 Utilized Algorithms

3.1 Base Algorithm

In this paper Mind Evolutionary Computation, MEC was selected as a base algorithm for
the considered hybridization scheme. Its concept was firstly proposed in 1998 [9, 10]. This
choice is justified, first of all, by the commitment to loosely coupled computing systems. MEC is
capable of providing the minimal number of connections between subpopulations which evolve
on the separate computational nodes. Such feature is required for a high efficiency of the meth-
od.

MEC simulates some aspects of human behavior in the society; every individual is an intel-
lectual agent which operates within a group of other individuals. In order to achieve a high posi-
tion within its group, an individual has to study from the most successful individuals in this
group. And groups themselves should follow the same principle to stay alive in the intergroup
competition [10].

In accordance with the algorithm a multi-population consists of some leading groups
Sh = (S{’,Sé’, ""Sll;bl) and some lagging groups S¥ = (Sy’,SY’, ..., Sjéw;), which include |Ss?|
and |SY| subpopulations correspondingly. A number of individuals in every of the mentioned

subpopulations is set to be the same and equals |S]|.

Each of subpopulations S?, S;¥ has its own communication environment named a local
blackboard and denoted as C?, C;" correspondingly. A multi-population as a whole § = (sb, 5"}
has a common global blackboard CY.

Canonical MEC is composed of three main stages: initialization of groups, similar-taxis
and dissimilation. Operations of similar-taxis and dissimilation are repeated iteratively while the
best obtained value of an objective function is changing. When the best obtained values stops
changing, the winner of the best group from a set of leading ones is selected as a solution to the
optimization problem.
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3.2 Hybrid MEC

There are several modifications of the canonical MEC algorithm proposed by different au-
thors, for instance, Extended MEC, Improved MEC, Chaotic MEC and so forth [10]. This paper
utilizes a modification proposed by the authors in one of their previous works [1, 2] and named
HMEC. The distinct feature of that algorithm is an addition of the decomposition stage and mod-
ification of the similar-taxis stage. The choice is made after a certain number of iteration what
meme out of a set of available memes is the most suitable for a given search subdomain. This
choice is independent for each group [8].

In this particular modification a greedy hyperheuristic was used for determining the best
meme in the groups, however other hyperheuristics are applicable as well [8]. The greedy strate-
gy suggests that the best meme is selected at each iteration in accordance with the local im-
provement it has demonstrated. The value of an objective function after the improvement was
taken as a choice criterion.

A general scheme of that algorithm can be described as follows [2].

1. Initialization of groups within the search domain D.

a. Divide domain D into subdomains D,, D,, ..., D,, by means of decomposing inter-
val [x;”i”; x;”“"] into n equal subintervals. Here a € [1:|X|], n — the algorithm's
free parameters.

b. Generate a given number y of groups S ;,i € [1:y] in each subdomain Dy, k €
[1: ], where y —another free parameter of the algorithm;

UZ=1 U?=1Sk,i =S.

c. Generate a random vector X, ;,, whose components are distributed uniformly
within the corresponding search subdomain in each group Sy ;. Identify this vector
with the individual sy ; 1 of the group Sy ;.

d. Determine the initial coordinates of the rest of individuals in the group sy ;;, j €
[2:]5]] following the formula

Xiij = Xii1 + Nix (0,0), ©)
in other words they are placed randomly around the main individual s ;, in ac-
cordance with |X|-dimensional normal distribution law Nx(0,0), with aero
mathematical expectation along all |X| coordinates and standard deviation o.

e. Calculate the scores of all individuals in the population S and put them on the cor-
responding local blackboards.

f. Create leading S” and lagging $" groups on the basis of obtained information.

2. Similar-taxis operation is performed in every group.

a. Take information on the current best individual sy ; ;+,j* € [1:[S]] of the group
S,; from the blackboard Cy ;.

b. Launch a meme chosen for a particular group sequantially from the current posi-
tions of each individual except for the main one.
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c. Determine a winner i.e. new main individual from the results of local improve-
ment in every group sy ; ;- [* € [1:]S]] .

d. Create leading and lagging groups on the basis of obtained information.

Put information on the new winners in every group of the population on the corre-
sponding local and global blackboards.
3. Dissimilation operation.

a. Read the scores of all groups £, f”, i € [1:|S”]],j € [1:|S*]] from the global
blackboard CY (scores of the best individuals in the groups).

b. Compare those scores. If a score of any leading group S? appeared to be less than
a score of any lagging group S;*, than the latter becomes a leading group and the
first group becomes a lagging one. If a score of a lagging group S}’ is lower than
scores of all leading groups, then it’s removed from the population.

c. Using the initialization operation and formula (3) each removed group is replaced
with a new one.

d. Evaluate the termination criteria. If either a number of stagnation iterations A,
or maximum allowed number of iterations A, are exceeded then the iterative
process should be stopped, otherwise it continues and goes to point 2.

3.3 Local search methods

At the stage of local optimization HMEC chooses the best meme (in accordance with se-
lected hyperheuristic) for each search subdomain from a set of local unconstrained optimization
algorithms, which in this work consists of the methods of Nelder—Mead, Hooke-Jeeves and Mon-
te-Carlo [11, 12].

The first method belongs to the class of zero-order deterministic optimization methods, i.e.
based only on the objective function’s values. The advantage of this method is that the shape of a
deformable polyhedron conforms to the topography of the objective function due to the expan-
sion and reduction operations. The disadvantage of the Nelder-Mead method is in possible de-
generation (“flattering”) of simplex for strongly ravine functions.

The Hooke-Jeeves method also belongs to the class of zero-order deterministic optimiza-
tion methods. The advantage of this method is its relative simplicity of implementation and hy-
bridization with global search methods. The disadvantage of this method is that it can’t ensure
the convergence to a minimum point in case of highly elongated, curved or sharp-edge contour
lines of the objective functions.

The Monte-Carlo method represents the class of zero-order stochastic optimization meth-
ods.

4 Software Implementation and Testing

A loosely coupled computational system that consists of 20 desktop computers running on
Windows 8 OS (8 GB RAM, Intel Core i5 processor with a CPU clock 3.20 GHz) was used for
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implementation and performance investigation of HMEC algorithm. Python programming lan-
guage and Python compiler v. 2.7.3 were chosen as development tools. Data exchange interface
MPI with Python implementation was also selected to support the distributed computing.

HMEC algorithm was implemented as an executable program and a set of modules. It sup-
ports a “multi-start” mode and takes the following input data: the number of iterations; the di-
mension of the search domain; the number of leading and lagging groups; the number of individ-
uals in groups; boundaries of the search domain; the objective function.

The program returns best obtained function value and the vector of variables that provided
that best value of the objective function.

Based on the data obtained from the calculations in the “multi-start” mode the probability
estimation of global minimum localization and the average number of trials for each benchmarks
function were determined.

Proposed algorithm and its program implementation were tested using a spherical function
that is continuous, convex and unimodal throughout its definition domain. This function has the
global minimum in the point x; = 0 and F(X) = 0, i = [1:|X]].

All tests were carried out under the same conditions: the number of iteration — 1000, the
number of individuals in groups — 20, the number of leading groups — 10, the number of lagging
groups — 10. The following results were received during the tests: best-obtained value for a ca-
nonical MEC algorithm is 3.5379e-05, for the Nelder-Mead method — 1.3372e-07, for the
Hooke-Jeeves method — 1.3567e-05, for the Monte-Carlo method — 5.5689e-06. All tests were
performed in the “multi-start” mode.

According to the results, we can conclude that all implemented algorithms ensure the con-
vergence of the objective function to its global minimum for a given search domain with the
specified values of the free parameters and coefficients.

5 Performance Investigation of HMEC

It's assumed that the iterative process went into a state of stagnation if there are no changes
with a given tolerance e = 107° in the best obtained value of the objective function for 30 con-
secutive iterations.

A speed of convergence was defined as a number of iterations before a state of stagnation
takes place. The average speed of convergence t — the average number of iterations in the “mul-
ti-start: mode before an iterative computational process goes into a state of stagnation. The aver-
age number of wins for every meme was denoted as S. The corresponding average number of
trials was denoted as N. Also for evaluating the efficiency of the software implementation a
probability estimate of global minimum localization € was used.

For all benchmark optimization functions a search domain is constrained as follows
[—100.0,100.0]; that domain was divided into a number of subgroups that is equal to the num-
ber of utilized CPUs N. A distributed computational network, which consists of 2, 5, 10, 25 and
40 CPU cores, was used for carrying out the experiments. Due to the large computational ex-
penses the dimension of vector X was limited to | X| = {2, 10}.
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For performance investigation of the software implementation the following benchmark
multi-modal optimization functions were utilized [13]: shifted and rotated Rosenbrock function;
shifted and rotated Weierstrass function; shifted and rotated Griewank function; shifted Schwefel
function.

The dependency of an estimation of the probability of global minimum localization on the
number of CPUs is presented on the figure 1. It follows from an analysis of these data that in-
crease in the number of processors and subsequently the number of decomposition areas leads to
a significant growth of the localization probability.
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Fig. 1. — Estimation of the probability of global minimum localization & depending on the number of CPUs N for
parallel HMEC: Il - |X| = 2,070 — |X| = 10

Increase in the dimension of benchmark functions leads to the decrease in quality of ob-
tained solution, but the parallel algorithm with initial decomposition of the search domain pro-
vides better chances of finding a high-quality solution even to complex multi-dimensional func-
tions.

The dependency of the averaged maximum number of trials on the number of CPUs is pre-
sented on the figure 2. From these diagrams it’s clear that on average the dimension or the num-
ber of CPUs have no explicit influence on the maximum number of trials.
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Obtained results are caused by the fact that a success of minimization and a number of tri-
als are connected to the initial values of the components of vector X in the search domain.

On the figure 3 the dependency of the average number of wins S for every meme with a
limit of 50 iterations on the number of CPUs for each benchmark function with |X| = 2 is pre-
sented. It's seen from received results that successful memes don't depend on the number of par-
allel process and subsequently the number of decomposition domains. It's important to notice
that for every function there is a more successful meme that is selected more frequently.
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Fig. 3. — Average number of victories for every meme depending on the number of CPUs N: Il — Nelder-Mead,
— Hooke-Jeeves, Il — Monte-Carlo

The Hooke-Jeeves method appeared to be the most suitable for Rosenbrock function, how-
ever for the rest of the functions the Monte-Carlo method was able to perform best local im-
provements. It’s also worth noticing that for Weierstrass and Griewank functions the Nelder-
Mead method was almost equivalent to the Monte-Carlo method. It may be concluded from ob-
tained results that HMEC can successfully adapt to various complex functions and take their
special features into account.
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Further expansion of a set of utilized meme would make this method even more adaptive
and, hence, suitable for various functions and real-world problems. The average number of itera-
tions ¢ depends on the dimension of the objective function and increases along with the latter.

It’s seen from analysis of obtained data that a parallel implementation of the hybrid multi-
memetic algorithm allows one to increase not only the quality of a solution but also the probabil-
ity of global minimum localization and avoid the premature convergence in the neighborhood of
some local optimum.

6 Conclusion

A new multi-memetic algorithm for solving global optimization problems named HMEC
was proposed in this paper. The distinct feature of this algorithm consists in using a set of differ-
ent memes, which allows the algorithm to adapt to various objective functions. It also includes
an operation of decomposing the search domain in order to avoid the premature convergence.

Software parallel implementation of that algorithm was developed using data exchange in-
terface MPI to make distributed computation possible on a loosely coupled system made of desk-
top computers.

Extensive performance investigation of the algorithm was carried out with a use of modi-
fied benchmark optimization functions. The efficiency of HMEC was estimated by the probabil-
ity of global optimum localization, the average number of iterations and the average number of
trials. The number of victories for each meme during local competitions in the “multi-start”
mode was also measured and analyzed. Results showed the parallel implementation of HMEC is
more capable of finding a high-quality minimum of an objective function (in terms of both prob-
ability and accuracy) then the sequential one. Modifications of the hybrid algorithm as well as
the whole multi-memetic approach proved to be promising and are worth of further investiga-
tion.

This work was supported by the Ministry of Education and Science of the Russian Federa-
tion (2014-14-579-0144)

References

1. Karpenko A., Posypkin M., Rubtsov A., Sakharov M. Multi-memetic Global Optimization
based on the Mind Evolutionary Computation. Proceedings of the IV International
Conference on Optimization Methods and Application “Optimization and Applications”
(OPTIMA-2013). Moscow, Dorodnicyn Computing Centre of RAS, 2013, pp. 83-84.

2. Karpenko A.P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye
prirodoi [Modern algorithms of search engine optimization. Nature-inspired optimization
algorithms]. Moscow, Bauman MSTU Publ., 2014. 446 p. (in Russian).

3. Karpenko A.P., Sakharov M.K. Multi-Memes Global Optimization Based on the Algorithm
of Mind Evolutionary Computation. Informacionnye Tehnologii = Information Technolo-
gies, 2014, no. 7, pp. 23-30. (in Russian).

Science & Education of the Bauman MSTU 448



http://technomag.bmstu.ru/en/

4. Weise T. Global Optimization Algorithms. Theory and Application. University of Kassel,
2008. 758 p.

5. Talbi E. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics, 2002, vol. 8, iss. 5,
pp. 541-564. DOI: 10.1023/A:1016540724870

6. Dawkins R. The Selfish Gene. Oxford University Press, 1976. 384 p.

7. Nguyen Q.H., Ong Y.S., Krasnogor N. A Study on the Design Issues of Memetic Algorithm.
IEEE Congress on Evolutionary Computation (CEC 2007). IEEE Publ., 2007, pp. 2390-
2397. DOI: 10.1109/CEC.2007.4424770

8.0ng Y.S., Lim M.H., Zhu N., Wong K.W. Classification of adaptive memetic algorithms: A
comparative study. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cyber-
netics, 2006, vol. 36, iss. 1, pp. 141-152. DOI: 10.1109/TSMCB.2005.856143

9. Chengyi S., Yan S., Wanzhen W. A Survey of MEC: 1998-2001. 2002 IEEE International
Conference on Systems, Man and Cybernetics. Vol. 6. IEEE Publ., 2002, pp. 445-453. DOI:
10.1109/ICSMC.2002.1175629

10. Jie J., Zeng J. Improved Mind Evolutionary Computation for Optimizations. Proceedings of
5" World Congress on Intelligent Control and Automation. Vol. 3. IEEE Publ., 2004, pp.
2200-2204. DOI: 10.1109/WCICA.2004.1341978

11. Floudas A.A., Pardalos P.M., Adjiman C., Esposito W.R., Gimis Z.H., Harding S.T.,
Klepeis J.L., Meyer C.A., Schweiger C.A. Handbook of Test Problems in Local and Global
Optimization. Kluwer, Dordrecht, 1999. 441 p.

12. Nelder J.A., Meade R. A Simplex Method for Function Minimization. Computer Journal,
1965, vol. 7, iss. 4, pp. 308-313. DOI: 10.1093/comjnl/7.4.308

13. Liang J.J., Qu B.Y., Suganthan P.N. Problem Definitions and Evaluation Criteria for the
CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical
Optimization. Technical Report 201311. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou, China; Technical Report. Nanyang Technological University, Sin-
gapore, 2013. 32 p.

Science & Education of the Bauman MSTU 449



http://technomag.bmstu.ru/en/
http://dx.doi.org/10.1023/A:1016540724870
http://dx.doi.org/10.1109/CEC.2007.4424770
http://dx.doi.org/10.1109/TSMCB.2005.856143
http://dx.doi.org/10.1109/ICSMC.2002.1175629
http://dx.doi.org/10.1109/WCICA.2004.1341978
http://dx.doi.org/10.1093/comjnl/7.4.308

Hayka u O6pazoBanue. MI'TY um. H.O. baymana.

HayKa £ 06paSOBaHI/[e Jnextpor. kypi. 2015. Ne 10. C. 438-452.

DOI: 10.7463/1015.0814435
MI'TY um. H.O. baymana
[Ipencraenena B pegakmmto:  02.09.2015

HcnpasneHa: 17.09.2015
ISSN 1994-0408 © Bauman Moscow State Technical Unversity

VJIK 519.6
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KoaioueBble cioBa: rinodanbpHas ONTUMH3AIMS, MEMETHYECKUE alTOPUTMbI, THOPHIHBIC alrOPUTMBI,

pacnpeaACICHHBIC BBIYUCIICHUS, 9BOJTIOIIMOHHBIC BBIYHUCIICHUS, aJITOPUTM DBOJIFOIIMHA pa3yMa

Pemenne coBpeMEHHBIX 3a7a4 ONTUMHU3ALMH IPOCKTHBIX PELICHUI, 3a4acTyl0, COIPSIKEHO
¢ OOJIBIIMMU 3aTpaTaMu BBIYMCIMTEIBHBIX pecypcoB. B HacTosiee BpemMsi OHUM M3 Hamboee
NEPCHEKTUBHBIX METOJIOB MHOBBILIEHUS 3()()EKTUBHOCTH pabOTHl aJrOPUTMOB Ui pPELICHUs
MOI00HBIX 3a/1a4 SIBJISIFOTCS paCpEeICICHHbIE MTapaljIeIbHbIE BBIYMCIICHUS.

B ToOXe Bpems, MpOCTOro yBeIWYEHHs] BBIUMCIUTEIbHBIX MOIIHOCTEH HEIOCTAaTOYHO JUIS
pelleHns NpaKTHYeCKU 3HAaYuMbIX 3aaad. Heobxoauma pas3paboTka crenuain3upOBaHHBIX
QJIITOPUTMOB, OPUEHTHUPOBAHHBIX HA KOHKPETHYIO MapajuIeIbHYIO CUCTEMY, YTO IMO3BOJIMIIO Obl
MOBBICUTH 3(PPEKTUBHOCTh METOAA, Onarojaps HCIOJIb30BAaHUIO OCOOCHHOCTEH apXUTEKTYpPbI
BBIYHCIIUTEIIBHON CUCTEMBI.

B nannoil paGote mpeasio’keH MapajuieNbHbIM MMOPUIHBIA aJrOPUTM 3BOJIIOLIMU pazyma
HMEC, koTOopbIii OTHOCHTCS K KIacCy MEMETHUECKUX aJTOPUTMOB TIIOOATBHON ONTHMHU3AINH.
OTnuuyuTeNnbHON 0COOEHHOCTHIO AITOPUTMA SIBISIETCS HUCIIOJIb30BAaHUE Psa PA3IMYHBIX MEMOB,
MO3BOJISIIOIIMX AITOPUTMY aallTUPOBAThCSA K Pa3sHOro poja ueneBbM ¢yHkmusaMm. [lox memom
MMOHUMAIOT KaKON-JIMOO aaTrOpPUTM JIOKAJBHON ONTHMM3AINHN, YTOUHSIONIUN TEKYIEee PEIIeHUue
HCXOJHOW 3aJjaui ONTUMH3ALMY Ha ONPEJEIICHHBIX IIarax BBIIOJIHEHHUS OCHOBHOI'O aJrOpPUTMA.
B mmpokoM cmbIciie, MEMETHUECKUE aJITOPUTMBbI PEACTABISAIOT cO00M rHOPUAN3ALIUI0 OJHOTO
U3 MOMYJISUOHHBIX aJTOPUTMOB INI00ATBHOTO MOUCKA M OJHOTO MM HECKOJBKHUX aJTrOPUTMOB
JIOKaJIbHOM ONTUMU3ALIUH.

AJTOpUTM OPUEHTHPOBAH HA MCIOJb30BAaHUE B CIIA0OCBS3aHHBIX BBIYUCIUTEIBHBIX
CHUCTEMAX, COCTOAIIUX U3 IEPCOHATBHBIX KOMIIBIOTEPOB.

B pamkax paboTel BBINOJHEHAa NpPOrpaMMHas pealu3alus [JaHHOTO ajIropuTMa ¢

WCIIOIb30BAaHUEM JCKOMIIO3UIIMA OOJIACTH TOWMCKA Ha CTaaud TICPBUYHONW HWHHUITHATH3AIAN
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MOMYJISIIAK. B KauecTBe MHCTPYMEHTOB Peau3allii UCIIOJIb30BAIUCH S3BIK MPOTPAMMHUPOBAHUS
Python u unrepdeiic oomena coodmenusmu MPI, kak oquH U3 Hauboiee pacpoOCTPaHEHHBIX U
OpPHEHTHUPOBAHHBIX Ha cJIa00CBsI3aHHbBIE CUCTEMbI HHTEP(ENCOB.

[Iupokoe uccnenoBanue 3(PPEKTUBHOCTH AITOPUTMA MPOBEJCHO HA HAOOpE TECTOBBIX
MoaudunupoBaHHbix QyHkiuid  PozenOpoka, Beitepmtpacca, I'puBanka wu IlIBedens.
D¢ PexTUBHOCTD anropuTMa OIIEHEHA C MOMOIIBI0 TAKUX TMOKa3aTeliel, Kak OlleHKa BEPOSITHOCTH
JIOKQJIM3alMM  TJI0OANBHOTO OJKCTPEMYyMa, CpEJHEe 4YHUCIO HTepaluil MU CcpelHee YHucCio
ucneiTanui. Taxoke ompeneneHo U MpoaHATU3UPOBAHO YHUCIIO MO0 MEMOB B XOJ1€ JOKAJIbHBIX
COCTSI3aHMM B TMpoLecCe MYJIbTUCTapTa IS KaXIOW TecToBOM ¢yHKuuu. PesynbraTsl
WCCJICIOBAaHHH MOKA3BIBAIOT, YTO MapauieNbHbIi MeMmeTndeckuit anroput™M HMEC mo3Bossier Bo
MHOTHX CJIy4asX C BBICOKOW BEpPOATHOCTBIO W TOYHOCTHIO JIOKAJIM30BaTh TJIOOAIBHBIN
HKCTPEMYM IS 33/IaHHON 1eNIeBOH (DYHKIIMH YeM TI0CIIeJOBATEIbHAS BEPCHUS allTOpPUTMA.

Pe3ynbrarhl ucciaenoBaHus MOKAa3bIBAIOT MEPCIEKTUBHOCTD JAIbHEHIINX MOIU UK 1

Pa3BUTHA MIApAUICIIbHBIX MYJIBTUMCMECBLIX aJITOPUTMOB rino0aabLHON OIITUMH3AllNH.
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