электронный журнал

МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

10, октябрь 2015

УДК 533.6.011.5

Расчет тепловых потоков на поверхности затупленных тел

Ожгибисова Ю.С., студент Россия, 105005, г. Москва, МГТУ им. Н. Э. Баумана, кафедра «Вычислительная математика и математическая физика»

Научный руководитель: Котенев В.П., д.т.н., профессор Россия, 105005, г. Москва, МГТУ им. Н. Э. Баумана, кафедра «Вычислительной математики и математической физики»; начальник отдела аэродинамики, Россия, 143966, Московская обл., г. Реутов, ОАО «ВПК «НПО машиностроения» bauman@bmstu.ru

Введение

Существует два метода расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя и основывается на использовании вычислительных машин. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие решения можно получить, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям.

В рамках данной работы представлен метод расчета распределения величины теплопередачи Q_x в произвольной точке криволинейной поверхности вращения, отнесенной к тепловому потоку Q_0 в точке полного торможения. В основе указанных методов лежит применение универсальных формул для расчета давления повышенной точности, рассмотренные в работах [1] и [2], основные уравнения двумерного пограничного слоя, подробный вывод которых приведен в [3], а также метод К. Польгаузена, позволяющий получить их аналитическое решение. Приводится сравнение полученных результатов расчета тепловых потоков с численным решением уравнений Навье-Стокса, представленным в работе [4].

Построение математической модели.

Рассмотрим основные дифференциальные уравнения двумерного ламинарного пограничного слоя при установившемся течении сжимаемого совершенного газа, описанные в [3].

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = -\frac{\partial P}{\partial x} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right), \tag{1}$$

$$\frac{dP}{dy} = 0, \text{ или } P = P_1 = \text{const.}$$
 (2)

$$\frac{\partial \rho u r^{\mathsf{v}}}{\partial x} + \frac{\partial \rho v r^{\mathsf{v}}}{\partial y} = 0, \tag{3}$$

$$\rho u \frac{\partial h}{\partial x} + \rho v \frac{\partial h}{\partial y} = u \frac{\partial P}{\partial x} + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\partial}{\partial y} \left(\frac{\lambda}{c_p} \frac{\partial h}{\partial y} \right), \tag{4}$$

$$P = \rho RT \,, \tag{5}$$

где u , v - проекции скорости на ортогональные координаты x и y; ρ , P - плотность и давление; μ - коэффициент вязкости; r - цилиндрический радиус тела, для плоского течения v=0, а для осесимметричного течения v=1; h - энтальпия; λ - коэффициент теплопроводности; c_p - удельная теплоемкость при постоянном давлении, причем $c_p=\frac{\partial h}{\partial T}$; R - газовая постоянная; T - температура.

Общее решение уравнений (1-5) при произвольном градиенте давления dP/dx является очень сложным. Однако при определенных допущениях можно получить некоторые общие соотношения.

Также необходимо сформулировать граничные условия. Для непроницаемой стенки скорость должна удовлетворять главному граничному условию u = v = 0 при v = 0 (условие прилипания).

При $y=\delta$ задаются значения $u=u_1$, $T=T_1$, где u_1 и T_1 - скорость и температура внешнего потока.

Обозначим индексом «0» параметры потока на стенке, индексом «1» - параметры на границе.

Вместо расстояния от стенки у введем безразмерное приведенное расстояние

$$\xi \equiv x, \ \eta = \frac{\int_{0}^{y} \frac{\mu_{1}(x)}{\mu(x,y)} dy}{\delta_{1}}, \tag{6}$$

где $\delta_1 = \int_0^{\delta(x)} \frac{\mu_1}{\mu} dy$ есть приведенная толщина пограничного слоя, $\delta(x)$ есть то конечное расстояние от стенки, на котором пограничный слой смыкается с внешним течением. При

этом справедливы следующие соотношения: $\eta(x,0) = \frac{\partial \eta}{\partial x}(x,0) \equiv 0$, $\frac{\partial P}{\partial x} = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial \eta} \frac{\partial \eta}{\partial x}$,

 $\frac{\partial P}{\partial y} = \frac{\mu_1}{\mu \delta_1} \frac{\partial P}{\partial \eta}$. Можно считать, что давление в поперечном сечении пограничного слоя

остается практически постоянным и равным давлению во внешнем потоке. Таким образом, второе уравнение движения может быть записано в виде

$$\frac{\partial P}{\partial y} = \frac{\mu_1}{\mu \delta_1} \frac{\partial P}{\partial \eta} = 0 \Leftrightarrow \frac{\partial P}{\partial \eta} = 0. \tag{7}$$

Запишем уравнения движения и неразрывности в пограничном слое в новых координатах

$$\rho u \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} \right) + \rho v \frac{\mu_1}{\mu \delta_1} \frac{\partial u}{\partial \eta} = -\frac{dP}{dx} + \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial^2 u}{\partial \eta^2}, \tag{8}$$

$$\frac{\partial \rho ur}{\partial x} + \frac{\partial \rho ur}{\partial \eta} \frac{\partial \eta}{\partial x} + \frac{\partial \rho vr}{\partial \eta} \frac{\partial \eta}{\partial y} = 0. \tag{9}$$

І. Уравнение движения и неразрывности на стенке преобразуются к виду

$$\frac{dP}{dx} = \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial^2 u}{\partial \eta^2}.$$
 (10)

$$\frac{\partial \rho ur}{\partial x} + \frac{\partial \rho vr}{\partial \eta} \frac{\partial \eta}{\partial y} = 0. \tag{11}$$

Продифференцировав (11) получим $\rho r \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial y} \right) + u \frac{\partial \rho r}{\partial x} + v \frac{\partial \rho r}{\partial \eta} \frac{\partial \eta}{\partial y} = 0$, т.е.

при
$$r \neq 0$$
: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial y} = 0$. Или $\frac{\partial v}{\partial \eta} = 0$, так как $\frac{\partial u}{\partial x} = 0$, а $\frac{\partial \eta}{\partial y} = \frac{\mu_1}{\mu \delta_1}$. $\frac{\partial v}{\partial \eta} = 0$ при

сколь угодно малом r, а значит по непрерывности и на критической линии.

Дифференцируем уравнение движения с учетом того, что на стенке

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial \eta} = \frac{\partial \eta}{\partial x} = 0 \text{ . Получаем } -\frac{\mu_1^2}{\mu^2 \delta_1^2} \frac{\partial \mu}{\partial \eta} \frac{\partial^2 u}{\partial \eta^2} + \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial^3 u}{\partial \eta^3} = 0 \text{ . To есть, } \frac{1}{\mu} \frac{\partial \mu}{\partial \eta} = \frac{\frac{\partial^3 u}{\partial \eta^3}}{\frac{\partial^2 u}{\partial \eta^2}}.$$

Будем считать, что $\mu = const\ h^\omega$ [3], тогда $\frac{\partial \mu}{\partial \eta} = const\ h^{\omega - 1} \frac{\partial h}{\partial \eta}$, при этом $\omega \ \Box \ 0,7$,

T.e.
$$\frac{1}{\mu} \frac{\partial \mu}{\partial \eta} = \frac{\omega}{h} \frac{\partial h}{\partial \eta}$$
.

II. Перейдем к исследованию на стенке уравнения энергии. Запишем его в новых переменных:

$$\rho u \left(\frac{\partial h}{\partial x} + \frac{\partial h}{\partial \eta} \frac{\partial \eta}{\partial y} \right) + \rho v \frac{\mu_1}{\mu \delta_1} \frac{\partial h}{\partial \eta} = u \frac{dP}{dx} + \frac{1}{\Pr} \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial^2 h}{\partial \eta^2} + \frac{\mu_1^2}{\mu \delta_1^2} \left(\frac{\partial u}{\partial \eta} \right)^2. \tag{12}$$

Используя граничное условие на стенке преобразуем соотношение (12) к следующему виду

$$\frac{1}{\Pr} \frac{\partial^2 h}{\partial \eta^2} + \left(\frac{\partial u}{\partial \eta}\right)^2 = 0, \tag{13}$$

следовательно $\left(\frac{\partial^2 h}{\partial \eta^2}\right)_0 < 0$.

При рассмотрении наиболее интересного с практической точки зрения случая $h_0 = {\rm const} \ , \ {\rm тогдa} \left(\frac{\partial h}{\partial x} \right)_0 = 0 \ . \ {\rm Продифференцируем} \ {\rm пo} \ \eta \ \ {\rm уравнениe} \ (12). \ {\rm Получим} :$

$$\frac{\partial u}{\partial \eta} \frac{dP}{dx} + \frac{1}{\Pr} \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial^3 h}{\partial \eta^3} + 2 \frac{\mu_1^2}{\mu \delta_1^2} \frac{\partial u}{\partial \eta} \frac{\partial^2 u}{\partial \eta^2} = 0. \tag{14}$$

III. Согласно методу Польгаузена, представим распределение скорости в пограничном слое полиномом четвертой степени

$$\overline{u} = \frac{u}{u_1(x)} = a\eta + b\eta^2 + c\eta^3 + d\eta^4.$$
 (15)

Вводим безразмерный параметр

$$\Lambda(x) = -\frac{\partial^2 \overline{u}}{\partial \eta^2} = \frac{\mu \delta_1^2}{\mu_1^2} \rho_1 \frac{\partial u_1}{\partial x} = \frac{\mu \delta_1^2}{\mu_1^2} \frac{1}{u_1} \frac{\partial P}{\partial x}.$$
 (16)

Используя граничные условия для скорости на стенке и на границе погранслоя, получаем систему уравнений для определения коэффициентов a, b, c, d

$$\begin{cases}
-2b = \Lambda \\
a+b+c+d=1 \\
a+2b+3c+4d=0 \\
2b+6c+12d=0
\end{cases}$$
(17)

Решая систему (17), определяем вид полинома, описывающего распределение скорости в пограничном слое

$$\overline{u} = \left(2 + \frac{\Lambda}{6}\right)\eta - \frac{\Lambda}{2}\eta^2 + \left(-2 + \frac{\Lambda}{2}\right)\eta^3 + \left(1 - \frac{\Lambda}{6}\right)\eta^4.$$

Это и есть полином Польгаузена.

Согласно [3], для параметра Λ может быть введена оценка $-12 \le \Lambda \le 12$.

Уточним её для случая q>0, т.е. $\left(\frac{\partial h}{\partial \eta}\right)_0>0$. Из (17) следует, что $-\frac{6\left(-2+\frac{\Lambda}{2}\right)}{\Lambda}>0$, следовательно, $0<\Lambda<4$.

Для коэффициента трения $\tau = \mu_0 \left(\frac{\partial u}{\partial y} \right)_0 = \frac{\mu_1}{\delta_1} \left(2 + \frac{\Lambda}{6} \right) u_1$, т.к. соответствующая

производная $\frac{\partial u}{\partial \eta}$ берется при $\eta = 0$.

IV. Следуя аналогии с методом Польгаузена, положим

$$h + \frac{u^2}{2} = h_0 + p\eta + q\eta^2 + s\eta^3 + t\eta^4.$$
 (18)

Значение h_0 на стенке будем считать постоянным, что соответствует наиболее распространенной математической постановке задачи.

Запишем первые три производные данного выражения с учетом того, что на стенке $\eta=0,\ u=\upsilon=0$

$$\left(\frac{\partial h}{\partial \eta}\right)_0 = p. \tag{19}$$

$$\left(\frac{\partial^2 h}{\partial \eta^2}\right)_0 + \left(\frac{\partial u}{\partial \eta}\right)_0^2 = 2q. \tag{20}$$

$$\left(\frac{\partial^3 h}{\partial \eta^3}\right)_0 + 3\left(\frac{\partial u}{\partial \eta}\right)_0 \left(\frac{\partial^2 u}{\partial \eta^2}\right)_0 = 6s. \tag{21}$$

Преобразуем (13) с учетом граничных условий на стенке

$$\frac{\partial^2 \left(h + \frac{u}{2} \right)}{\partial \eta^2} = \left(1 - \Pr \right) \left(\frac{\partial u}{\partial \eta} \right)^2. \tag{22}$$

Продифференцируем уравнение (12). С учетом (10), (13) и граничных условий на стенке выражение принимает следующий вид

$$3\frac{\partial u}{\partial \eta}\frac{\partial^2 u}{\partial \eta^2} + \frac{1}{\Pr}\frac{\partial^3 h}{\partial \eta^3} = 0. \tag{23}$$

Преобразуем последнее соотношение

$$\frac{\partial^{3} \left(h + \frac{u}{2} \right)}{\partial \eta^{3}} = 3 \left(1 - \Pr \right) \frac{\partial u}{\partial \eta} \frac{\partial^{2} u}{\partial \eta^{2}}.$$
 (24)

Продифференцируем (8) с учетом того, что на границе $\frac{\partial u}{\partial \eta} = \frac{\partial^2 u}{\partial \eta^2} = 0$. А так же

$$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial \eta} \right) = 0$$
 , т.к. $\frac{\partial u}{\partial \eta} = 0$. Получим

$$\frac{\partial \rho}{\partial \eta} u_1 \frac{\partial u_1}{\partial x} = \frac{\mu_1^2}{\mu \delta_1^2} \left(\frac{\partial^3 u}{\partial \eta^3} \right)_1 = -\frac{1}{\rho_1} \frac{\partial \rho}{\partial \eta} \frac{dP}{dx}. \tag{25}$$

Согласно закону Бернулли можно определить статическую энтальпию $h = \frac{\gamma}{\gamma - 1} \frac{P}{\rho}$,

при дифференцировании получаем $\frac{\partial h}{\partial \eta} = -\frac{\gamma}{\gamma-1} \frac{P}{\rho^2} \frac{\partial \rho}{\partial \eta} = -h \frac{1}{\rho} \frac{\partial \rho}{\partial \eta}$. После преобразований

имеем $-\frac{1}{h} \left(\frac{\partial h}{\partial \eta} \right) = \frac{1}{\rho} \frac{\partial \rho}{\partial \eta}$. Следовательно, на границе справедливо соотношение

$$\frac{1}{h_{1}} \left(\frac{\partial h}{\partial \eta} \right)_{1} \left(\frac{dP}{dx} \right) = \frac{\mu_{1}^{2}}{\mu \delta_{1}^{2}} \left(\frac{\partial^{3} u}{\partial \eta^{3}} \right)_{1}.$$
 Запишем производную (18) применительно к границе

пограничного слоя

$$\left(\frac{\partial h}{\partial \eta}\right)_1 = p + 2q + 3s + 4t. \tag{26}$$

На теле справедливо
$$\frac{1}{\mu} \frac{\partial \mu}{\partial \eta} = \frac{\omega}{h_0} \left(\frac{\partial h}{\partial \eta} \right)_0 = \frac{\left(\frac{\partial^3 \overline{u}}{\partial \eta^3} \right)_0}{\left(\frac{\partial^2 \overline{u}}{\partial \eta^2} \right)_0} = \frac{6c}{\omega 2b} = \frac{p}{h_0}$$
, откуда

$$p = \frac{h_0}{\omega} \frac{-12 + 3\Lambda}{-\Lambda}.$$
 (27)

При дифференцировании полинома Польгаузена и учитывая граничные условия на

стенке получаем
$$\left(\frac{\partial \overline{u}}{\partial \eta}\right)_0 = \frac{1}{u_1} \left(\frac{\partial u}{\partial \eta}\right)_0 = \left(2 + \frac{\Lambda}{6}\right)$$
, следовательно $\left(\frac{\partial u}{\partial \eta}\right)_0 = u_1 \left(2 + \frac{\Lambda}{6}\right)$.

Учитывая (20) и граничные условия на стенке можем определить следующий коэффициент полинома (18)

$$q = \frac{(1 - \Pr)}{2} u_1^2 \left(2 + \frac{\Lambda}{6} \right)^2. \tag{28}$$

Согласно (16)
$$\left(\frac{\partial^2 u}{\partial \eta^2}\right)_0 = -\Lambda(x)$$
. Следовательно $\left(\frac{\partial^2 u}{\partial \eta^2}\right)_0 = -u_1\Lambda$. Для

определения коэффициента ѕ получаем соотношение

$$s = -\frac{\left(1 - \Pr\right)}{2}u_1^2 \left(2 + \frac{\Lambda}{6}\right)\Lambda. \tag{29}$$

Решаем систему, учитывая (27), (28), (29)

$$\begin{cases}
\left(\frac{\partial h}{\partial \eta}\right)_{1} = p + 2q + 3s + 4t \\
H - h_{0} = p + q + s + t
\end{cases}$$
(30)

$$3p + 2q + s = 4(H - h_0) - \left(\frac{\partial h}{\partial \eta}\right)_1 \tag{31}$$

$$3\left[\frac{h_0}{\omega} \frac{-12+3\Lambda}{-\Lambda}\right] + 2\left[\frac{\left(1-\operatorname{Pr}\right)}{2}u_1^2(x)\left(2+\frac{\Lambda}{6}\right)^2\right] + \left[-\frac{\left(1-\operatorname{Pr}\right)}{2}u_1^2(x)\left(2+\frac{\Lambda}{6}\right)\Lambda\right] =$$

$$= 4\left(H-h_0\right) - \left(\frac{\partial h}{\partial \eta}\right)_1. \tag{32}$$

На внешней границе пограничного слоя при установившемся течении справедлив интеграл Бернулли

$$h_1 + \frac{u_1^2}{2} = H = \text{const},$$
 (33)

где H - параметр, называемый полной энтальпией (или энтальпией торможения), связывающий энтальпию и кинетическую энергию.

Модуль скорости газа на линии тока не может превышать некоторого максимального значения $u_1 \leq V_{\max}$, где

$$V_{\text{max}}^2 = 2H . (34)$$

Подставляя формулу (34) в (33), перепишем интеграл Бернулли в виде

$$h_1 + \frac{u_1^2}{2} = \frac{V_{\text{max}}^2}{2} \,. \tag{35}$$

Введем безразмерные параметры следующим образом

$$\overline{h_1} = \frac{h_1}{H} = \left(\frac{P_1}{P_0'}\right)^{\frac{\gamma - 1}{\gamma}}.$$
(36)

Преобразуем (33) с учетом (36)

$$\frac{u_1^2}{H} = 2 \left(1 - \left(\frac{P_1}{P_0} \right)^{\frac{\gamma - 1}{\gamma}} \right). \tag{37}$$

В качестве примера рассмотрим стенку с постоянным значением безразмерной энтальпии $\overline{h_0} = \frac{h_0}{H} = 0,2;0,3;0,5$.

Получаем уравнение для определения $\Lambda(x)$

$$\left[4\left(1-\overline{h_0}\right) + \frac{9h_0}{\omega} - \overline{h_0}^{\omega} \tau^{1-\omega}\right] \Lambda - \frac{36\overline{h_0}}{\omega} + 12\overline{h_0}^{\omega} \tau^{1-\omega} =$$

$$= \frac{\Lambda}{9} (12+\Lambda)(6-\Lambda)(1-\Pr)(1-\tau). \tag{38}$$

V. Для использования соотношения (38) также необходимо знать распределение давления на всем участке между интересующей точкой и точкой полного торможения. Воспользуемся результатами работ [1] и [2], где приведены формулы для распределения давления, отнесенного к давлению торможения на поверхности затупленных тел

$$P(\sigma) = \frac{P_1}{P_0'} = \left[\frac{1 - \frac{\gamma - 1}{\gamma + 3} \cdot \left(\frac{\sigma - \pi / 2}{\sigma_* - \pi / 2}\right)^2}{1 + \frac{\gamma - 1}{\gamma + 3} \cdot \left(\frac{\sigma - \pi / 2}{\sigma_* - \pi / 2}\right)^2} \right]^{\lambda(\sigma) \frac{\gamma}{\gamma - 1}}.$$
(39)

где σ_* - угол между осью тела и вектором скорости в звуковой точке, $\gamma=1,4$ - показатель адиабаты.

Поясним, каким образом строится функция $\lambda(\sigma)$, входящая в формулу (39) для тел, отличных от сферы. Для случая сферы $\lambda(\sigma) \equiv 1$. Так как в звуковой точке должно

выполняться равенство
$$P_* = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$
, то $\lambda(\sigma_*) \equiv 1$. Будем считать функцию $\lambda(\sigma)$

линейной. Пусть вторая точка x_0 , через которую проходит прямая $\lambda(\sigma)$, лежит в небольшой окрестности σ_* и $\lambda(x_0) = \lambda_0$. Тогда $\lambda(\sigma)$ имеет вид

$$\lambda(\sigma) = 1 + \frac{1 - \lambda_0}{\sigma_* - x_0} (\sigma - \sigma_*). \tag{40}$$

Положение точки x_0 определим эмпирически в зависимости от положения звуковой точки на поверхности тела из условия:

если
$$\sigma_{**} > \sigma_{*}$$
, то $x_0 = 1,15\sigma_{*}$; (41)

если
$$\sigma_{**} < \sigma_{*}$$
, то $x_0 = 0.85 \sigma_{*}$, (42)

где σ_{**} определяет положение звуковой точки на сфере.

В небольшой окрестности звуковой точки для расчета давления с высокой точностью можно воспользоваться модификацией формулы Ньютона:

если
$$\sigma \ge \sigma_*$$
, то $P = \sin^2 \sigma + \frac{P_* - \sin^2 \sigma_*}{\cos^2 \sigma_*} \cos^2 \sigma$; (43)

если
$$\sigma < \sigma_*$$
, то $P = \left(P_* - P_{\infty}\right) \frac{\sin^2 \sigma}{\sin^2 \sigma_*} + P_{\infty}$. (44)

Величину λ_0 будем искать из равенства давления, рассчитываемого по формуле (39), давлению, рассчитываемому по формулам (43) или (44) в точке x_0 . Таким образом, в любой точке тела можно вычислить значение $\lambda(\sigma)$, а значит и давление по формуле (39).

Для определения положения звуковой точки σ_{**} на поверхности сферы используем формулу работы [1]

$$\sigma_{**} = \begin{cases} \arcsin\left(\sqrt{\frac{P_* - 1/\left(1 + \gamma M^2\right)}{1 - 1/\left(1 + \gamma M^2\right)}}\right) \text{ при } M < 2,5; \\ 90^{\circ} - \left(34^{\circ} + 40^{\circ} \kappa\right) \text{ при } M \ge 2,5. \end{cases}$$

$$(45)$$

Здесь $\kappa = \frac{\gamma - 1}{\gamma + 1} + \frac{2}{\gamma + 1} \frac{1}{M^2}$, M - число Маха набегающего потока.

Для затупленных тел вращения, отличных от сферы, при нахождении σ_* использовалась теория контурных функций

$$f = \frac{1}{r} \frac{\partial V}{\partial P} = -\frac{1}{r \rho V}$$

которая описана в [5], [6], [7]. Данные функции удовлетворяют обыкновенному дифференциальному уравнению второго порядка вдоль контура тела

$$\frac{\partial^2 f}{\partial \sigma^2} + f = \frac{\partial R}{\partial \Psi},$$

где ψ - специальным образом введенная динамически-адаптивная переменная. Суть указанного метода состоит в том, что каждая точка произвольного контура аппроксимируется некоторой окружностью радиуса $R(\sigma)$ (радиус кривизны контура), что дает возможность составить целевое уравнение

$$\left(\frac{f^{"}}{f}\right)_{*} = \left(\frac{f^{"}}{f}\right)_{**}.$$

Перейдем к основной задаче, рассматриваемой в статье, определению теплового потока на поверхности тела.

VI. Для определения тепловых потоков используется следующая формула

$$Q = \frac{\mu_0}{\Pr} \frac{\partial h}{\partial y} = \frac{\mu_0}{\Pr} \left(\frac{\partial h}{\partial \eta} \right)_0 \frac{\partial \eta}{\partial y} = \frac{1}{\Pr} \frac{h_0}{\omega} \frac{\mu_1}{\delta_1} \frac{12 - 3\Lambda}{\Lambda}, \tag{46}$$

где
$$\frac{\mu_1}{\delta_1} = \sqrt{\frac{\rho_1 \frac{du_1}{dx} \mu_0}{\Lambda}}$$
. Здесь $\frac{du_1}{dx} = -\frac{1}{R(\sigma)} \frac{du_1}{d\sigma}$, $\frac{\rho_1}{\rho_0} = \left(\frac{P_1}{P_0}\right)^{\frac{1}{\gamma}}$, где ρ_0 - плотность в точке

торможения.

При вычислении
$$\dfrac{Q}{Q_0}$$
 отношение $\dfrac{\dfrac{du_1}{d\sigma}}{\left(\dfrac{du_1}{d\sigma}\right)_0}$ принимается тем же, что и на сфере.

Результаты.

Сравним результаты применения полученных формул (38) и (46) для определения тепловых потоков на поверхности эллипсоида с точным численным решением.

Рассмотрим применение формулы (46) для расчета тепловых потоков на эллиптической поверхности при различных числах Маха набегающего потока, исследование которых также приведено в [4]. На рис. 1-2 сплошной линией представлены полученные результаты, а крестиками – результаты расчета в рамках уравнений Навье – Стокса [4].

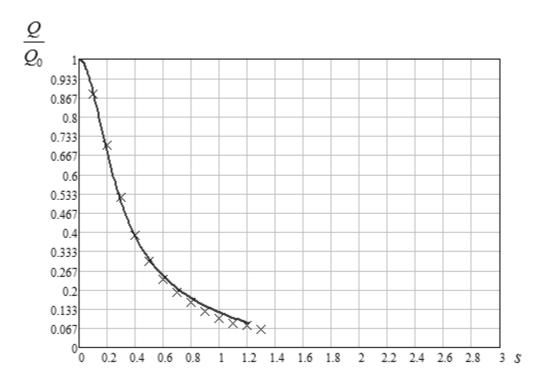


Рис. 1. Зависимость Q / Q_0 для эллиптической поверхности при $\overline{h_0}=0.16$; $\Pr=0.7$, $\omega=0.7$, n=1/2 , M=10 .

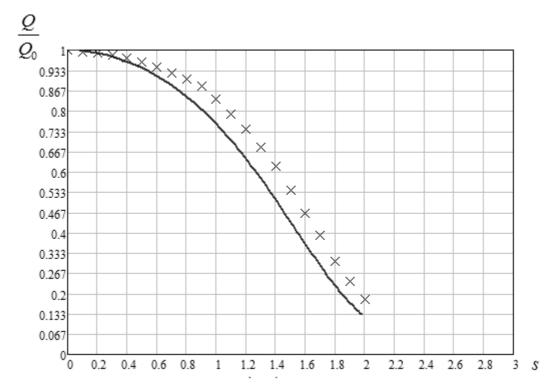


Рис. 2. Зависимость Q/Q_0 для эллиптической поверхности при $\overline{h_0}=0.16$; $\Pr=0.7$, $\omega=0.7$, n=3/2, M=10.

Заключение

Метод, рассмотренный в рамках данной работы, был применен для расчёта величины теплопередачи в произвольной точке поверхности, отнесенной к величине теплового потока в точке полного торможения на поверхности эллипсоида. Применение модифицированного метода Польгаузена позволило получить зависимости в простой аналитической форме для описания процесса обтекания сверхзвуковым потоком газа. Модификация метода состояла в том, что энтальпия представлялась в виде полинома четвертой степени, как и скорость в оригинальном методе Польгаузена.

Для сравнения результатов расчета по предложенному методу использовалось точное решение, полученное в рамках уравнений Навье-Стокса [4]. Относительная погрешность результатов не превышает 20%. Таким образом, полученные данные могут использоваться на начальной стадии проектирования летательных аппаратов.

Список литературы

 Котенев В.П. Точная зависимость для определения давления на сфере при произвольном числе Маха сверхзвукового набегающего потока // Математическое моделирование. 2014. Т. 26. № 9. С. 141-148.

- 2. Котенев В.П., Сысенко В.А. Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых, затупленных тел вращения произвольного очертания // Математическое моделирование и численные методы. 2014. Т. 1. № 1-1. С. 68-81.
- 3. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1969. 824 с.
- 4. Брыкина И.Г. Методы расчета теплопередачи и трения при пространственном гиперзвуковом ламинарном обтекании тел во всем диапазоне чисел Рейнольдса: автореф. дис... д-ра. физ.-мат. наук. М., 2013. 38 с.
- 5. Котенев В.П. Уравнения двумерных течений газа в динамических переменных // Информационные технологии. 2007. № 1. С. 37-41.
- 6. Димитриенко Ю.И., Котенев В.П., Захаров А.А. Метод ленточных адаптивных сеток для численного моделирования в газовой динамике. М.: ФИЗМАТЛИТ, 2011. 280 с.
- 7. Котенев В.П., Сысенко В.А. Уточненный метод быстрой оценки давления на поверхности гладких затупленных тел // Вестник МГТУ им. Н. Э. Баумана. Естественные науки. Спец. вып. «Математическое моделирование». № 3. 2012. С. 64-74.