МОЛОДЕЖНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51038.

УДК 621.317.2

Облучатель на базе решетки одномодовых волноводов с секторной диаграммой направленности Ка-диапазона волн

Пропастин А.А., студент кафедра «Радиоэлектронные системы и устройства» Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана

Научные руководители: Митрохин В.Н., д.т.н, профессор Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Радиоэлектронные системы и устройства»

Можаров Э.О., аспирант Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Радиоэлектронные системы и устройства» <u>aaprop2512@student.bmstu.ru</u>

Введение. Обычными методами формирования столообразной диаграммы направленности является использование: антенных подрешеток на основе пассивного многополюсника [1], волноводных структур с несколькими типами волн [2,3], антенн вытекающей волны со слоем диэлектрика над апертурой [4], диэлектрических стержней [5], а также круглых волноводов с многослойными дисковыми структурами [6]. Далее будет рассмотрен последний метод. В качестве пассивного многополюсника будет выступать делитель мощности, выполненный по однокаскадной шахматной схеме. Оценка качества секторной диаграммы направленности определяется измерением ширины главного лепестка по уровню 1 дБ в рабочем диапазоне частот.

Расчет геометрии решетки. Конструкция излучателя описанная в источнике [1] представляет собой решетку из 10×1 открытых концов волноводов сечением $6,1\times3,4$ мм². Предварительные анализ шахматной схемы и амплитудно-фазового распределения позволил предположить, что для получения главного лепестка ДН шириной 40° в Н-плоскости и 35° в Е-плоскости на частоте 34 ГГц возможно с использованием решетки их 10×10 открытых концов волноводов. Рассчитаем период решетки. Шаг решетки вычисляется из условия отсутствия интерференционных максимумов в области видимости по формуле (1).

$$dx = \frac{\lambda}{1 + \sin\left(\frac{\Delta\varphi}{2}\right)}, \qquad \qquad dy = \frac{\lambda}{1 + \sin\left(\frac{\Delta\theta}{2}\right)}, \qquad (1)$$

где dx - период решетки по оси х;

dy - период решетки по оси у.

Таким образом, период решетки по оси х будет равен 6,5 мм, а по оси у 6,7 мм. Амплитудное распределение вида (2) соответствует идеальной секторной ДН.

$$\frac{\sin(\pi \cdot x/d)}{\pi \cdot x/d},\tag{2}$$

где d - период решетки.

В требованиях к идеальности сектора ДН примем излучение в идеальный сектор не менее 80 %, что несколько меньше теоретического значения 92,1 % [1]. Коэффициент излучения в идеальный сектор вычислялся по формуле (3)

$$K = \frac{\oint F^2(\theta, \varphi) \cdot \sin(\theta) d\theta d\varphi}{\oint_{\Omega = 2\pi} F^2(\theta, \varphi) \cdot d\Omega},$$
(3)

где Ω с- телесный угол сектора от 0 до 2π градусов;

dθ и dφ изменяются в пределах заданного сектора.

Заданный коэффициент можно получить с помощью однокаскадной шахматной схемы. Соответствующая геометрия решетки представлена на рисунке 1.

Рис. 1. Геометрия решетки

АФР создается волноводно-щелевым делителем мощности, имеющим одинаковую структуру в Е- и Н-плоскостях (рисунок 2). Ответвители в каждом ряду имеют одинаковые коэффициенты перекрестной связи q. Значения q взяты из таблицы в источнике [1] и равны для первого ряда ответвителей q₁=-7,17 дБ, для второго- q₂=-2,61 дБ. Коэффициенты связи определялись через оптимизацию. Целевой функцией

являлась функция диаграммы направленности, выраженной в явном виде через параметры перекрестных связей ответвителей q. Решение задачи автоматически обеспечивает минимизацию мощности, излучаемой в область [π, 2π].

Рис. 2. Структура делителя мощности

Расчет шахматной схемы возбуждения для Н–плоскости. В данной схеме излучатели возбуждаются через симметричные двухканальные делители мощности, представленные двухщелевыми направленными ответвителями (рисунок 3) [7]. Длина щели связи определялась по формуле (4).

$$\frac{l}{\lambda} = \frac{\arcsin\left[\sqrt{10^{0, \cdot 1C_{41}}} + 2 \cdot \pi \cdot n\right]}{\pi \cdot \left(\sqrt{1 - \left[\frac{\lambda}{2 \cdot a}\right]^2} - \sqrt{1 - \left[\frac{\lambda}{a}\right]^2}\right)},\tag{4}$$

где а-поперечный размер отверстия связи;

С₄₁- коэффициент связи, отрицательная величина, выражается в децибелах;

n=0, 1, 2, ...- определяет длину делителя.

Расстоянием между щелями устанавливалось кратным $\lambda/4$.

Рис. 3. Двухщелевой направленный ответвитель

Внешний вид делителя представлен на рисунке 4. Первая щель представляет 3 дБ волноводно-щелевой мост, предназначенный для согласования делителя с волноводным входом. Изменяемым параметром согласования является расстояние от волноводнощелевого моста до ответвителя. Следующие две пары щелей представляют направленные ответвители с коэффициентами связи -7,17 дБ и -2,61 дБ. Последняя щель служит реактивной связью между излучателями, чтобы уменьшить их взаимное влияние.

Рис. 4. Делитель в Н-плоскости

Расчет шахматной схемы возбуждения для Е-плоскости. В данном случае в качестве элемента связи выступает направленный ответвитель щелевого типа [7]. Чтобы получить требуемое ослабление применялась распределенная связь, представляющая цепочку из пяти ответвителей расположенных на расстоянии $\lambda/4$ (рисунок 5). Для лучшего согласования амплитуда по отверстиям распределена по закону косинуса, поэтому отверстия имеют разную ширину.

Рис. 5. Направленный ответвитель в Е-плоскости

Делитель имеет аналогичную структуру за исключением волноводно-щелевого моста и щелей для уменьшения взаимного влияния облучателей (рисунок 6) [7]. Так как ответвители хорошо согласованы, то в щелевом мосте нет необходимости. Лучшее согласование обусловлено распределенной связью, при которой отражения меньше, чем при одиночных ответвителях.

Рис. 6. Делитель в Е-плоскости

Моделирование излучателя. Диаграммообразующая схема решетки для получения секторной диаграммы в обеих плоскостях показана на рисунке 7. Сначала происходит деление мощности в Е-, затем в Н-плоскости. Запитывается центральный волновод делителя для Е-плоскости.

Рис. 7. Диаграммообразующая схема решетки

На рисунке 8 представлена диаграммы облучателя в Н- и Е-плоскостях, полученные путем электродинамического моделирования.

Рис. 8. Диаграмма направленности облучателя: 1- в Н-плоскости; 2-в Е-плоскости

Ширина главного лепестка по уровню 1 дБ в Н-плоскости равна 31°, по уровню 3 дБ - 39°. В Е-плоскости ширина луча по уровню 1дБ составляет 26° и 35° по уровню 3 дБ. Уровень боковых лепестков для Н-плоскости на превышает -21 дБ, для Е-плоскости - 13 дБ. Значение КСВН волноводного входа не превышает 1,8 в диапазоне частот.

На центральной частоте коэффициент излучения в сектор составил 85% для Н-плоскости и 79% для Е-плоскости. Теоретическое значение соответствует 92,1%. Ниже приведена таблица сравнения некоторых облучателей с секторными диаграммами направленности.

	Диэлектрический	С	Излучатель под	Многоуровневый
	стержневой [8]	шахматной	слоем	дисковой [6]
		схемой	диэлектрика [5]	
Уровень				
боковых	6	12	15	19
лепестков	-0	-12	-15	-10
дБ				
Полоса	1.4.04	6 %	10.04	8 0/
частот	14 70	0 70	10 70	0 70

Заключение. Рассмотренная конструкция может быть изготовлена путем сборки Н–плоскостных ребристых пластин. Центральные выходы оканчиваются стандартными фланцами, остальные согласованными нагрузками. Благодаря алгоритму синтеза описанному в литературе [1], с помощью шахматной схемы возбуждения можно формировать не только диаграммы со столообразными вершинами. Если существует необходимость, можно улучшить качество секторных ДН путем применения двухкаскадной схемы, состоящей из четырех типов направленных ответвителей.

Список литературы

- 1. Скобелев С.П. Фазированные антенные решетки с секторными парциальными диаграммами направленности. М.: Физматлит, 2010. 320 с.
- 2. Бей Н.А., Митрохин В.Н. Исследование многомодовых антенн обратного излучения // Антенны. 2005. Вып.10 (101). С. 42-47.
- Митрохин В.Н. СВЧ- установки для медицинских целей: учебное пособие / под ред. Н.А. Бея. М.: Изд-во МГТУ им. Н. Э. Баумана, 1998. 19 с.
- Крехтунов В.М., Русов Ю.С. Исследование диэлектрических излучателей для фазированных антенных решеток // 13-я Международная Крымская конференция «СВЧ техника и телекоммуникационные технолоогии». Севастополь, 2003. С. 382-384. DOI:10.1109/CRMICO.2003.158865.
- Scattone F., Ettorre M., Sauleau R., Fonseca N.J.G. A flat-topped leaky-wave source for phased arrays with reduced scan losses // The 8th European Conference on Antennas and Propagation. Netherlands, 2014. P. 1220-1224. DOI:10.1109/EuCap.2014.6901995.
- Soon-Young Eom, Seong-Keun Kim, Jong-Gwan Yook. Multilayered disk array structure surrounded by a dielectric ring for shaping a flat-topped radiation pattern // IEEE antennas and wireless propagation letters. Vol. 7. 2008. P. 374-376. DOI: 10.1109/LAWP.2008.2001631.
- 7. Вамберский М.В., Абрамов В.П., Казанцев В.И. Конструирование ферритовых развязывающих приборов СВЧ. М.: Радио и связь, 1982. 136 с.
- Можаров Э.О. Исследование качества работы зеркального коллиматора Ка-диапазона волн с использованием тестовых антенн // Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2013. № 2. Режим доступа: <u>http://sntbul.bmstu.ru/doc/550923.html</u> (дата обращения 03.04.2013).