ИНЖЕНЕРНЫЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51036. ISSN 2307-0595

Геометрическое обеспечение построения гладких сопряжений из отсеков конических поверхностей второго порядка

06, июнь 2015 Иванов Г. С.¹, Жирных Б. Г.^{1,*}

УДК: 515.2

¹Россия, МГТУ им. Н.Э. Баумана *borjir@yandex.ru

Тема «Пересечение поверхностей» является одним из важных разделов учебного курса начертательной геометрии. Большое внимание здесь уделяется пересечению поверхностей второго порядка (квадрик). В общем случае они пересекаются по пространственной кривой четвертого порядка (2x2=4). В частных случаях взаимного положения квадрик линия их пересечения может распадаться в следующих вариантах:

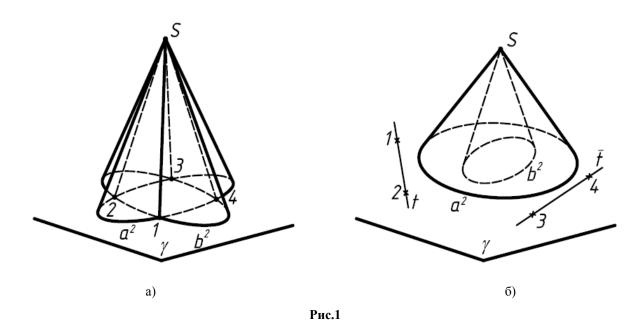
- прямая и кривая третьего порядка (нормкривая) (4=1+3);
- две прямые и кривая второго порядка (4=1+1+2);
- четыре прямые (4=1+1+1+1);
- две кривые второго порядка (4=2+2).

Первый вариант (4=1+3) подробно рассмотрен в статье [1], а четвертый вариант (4=2+2) достаточно полно освещается почти во всех учебниках начертательной геометрии:

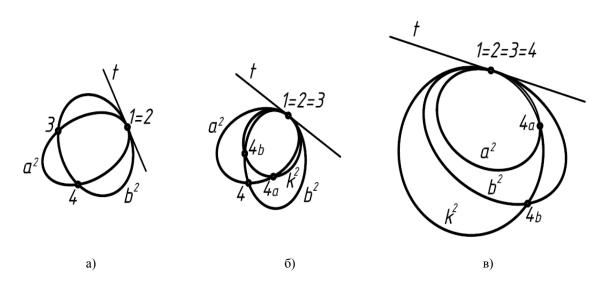
- теорема Монжа;
- теорема о двух точках соприкосновения;
- теорема о пересечении двух квадрик, инцидентных кривой второго порядка.

Второй (4=1+1+2) и особенно третий (4=1+1+1+1) варианты распадения, на первый взгляд, представляются очевидными и, по-видимому, из-за этого, не нашли подробного рассмотрения в учебниках начертательной геометрии. Задачей настоящей публикации является рассмотрение, казалось бы, самого простого варианта — распадения линии пересечения двух квадрик на четыре прямые. Эта задача приобретает прикладное значение при конструировании технических поверхностей как гладких двумерных обводов, составленных, в частности, из отсеков конических и цилиндрических поверхностей.

Общеизвестно, что этот вариант распадения имеет место при пересечении двух конических поверхностей второго порядка с общей вершиной $\alpha(S,a^2)$, $\beta(S,b^2)$, двух цилиндрических поверхностей с параллельными образующими. Принимая направляющие a^2 и b^2 этих поверхностей, принадлежащими одной плоскости γ , имеем несколько вариантов их



Промежуточными вариантами пересечения направляющих a^2 и b^2 будут различные сочетания действительных и мнимо-сопряженных, различных и совпавших точек (рис.2). На рис.2.а показан вариант, когда кривые a^2 и b^2 имеют две совпавшие 1 и 2 и две различные 3 и 4 точки пересечения. Совпадение точек 1 и 2 графически выражается в появлении здесь их общей касательной прямой t, то есть графическим признаком двухточечного касания кривых a^2 и b^2 является наличие их общей касательной t.



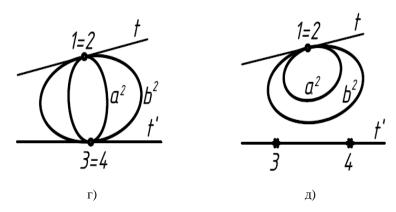


Рис.2

Существование у кривых a^2 и b^2 трехточечного касания 1=2=3 выражается в наличии здесь их общей касательной t и общего круга кривизны k^2 (рис.2.б). Кроме этих трех совпавших точек 1=2=3 кривые a^2 и b^2 пересекаются еще в точке 4. Круг кривизны k^2 также пересекается с каждой из кривых a^2 и b^2 в трех совпавших точках 1=2=3 и четвертой точке $4_a = k \cap a$, $4_b = k \cap b$.

Кривые a^2 и b^2 также могут пересекаться в четырех совпавших точках 1=2=3=4 (рис.2.в). Другими словами, они могут иметь четырехточечное касание. Это выражается в существовании здесь общей касательной (равенство первых производных), общего круга кривизны (равенство первых и вторых производных) и равенство первых, вторых и третьих производных от уравнений кривых a^2 и b^2 . Заметим, что их общий круг кривизны с каждой из этих двух кривых второго порядка a^2 и b^2 имеет трехточечное касание 1=2=3 и четвертую точку пересечения: $4_a = k \cap a$, $4_b = k \cap b$.

И, наконец, кривые a^2 и b^2 могут пересекаться в четырех действительных, попарно совпавших точках 1=2 и 3=4 (рис.2.г), и в двух совпавших действительных точках 1=2 и в двух мнимо-сопряженных точках 3 и 4 (рис.2.д). Как обычно, совпадение двух точек ведет к появлению здесь общей касательной этих кривых, а пересечение в мнимо-сопряженных точках — к существованию действительной прямой \overline{t} , пересекающей обе кривые в одной и той же паре мнимо-сопряженных точек 3 и 4.

Далее, возникает задача: как построить (задать) кривые a^2 и b^2 , имеющие рассмотренные выше возможные варианты их пересечений. Аналитический подход к решению этой задачи общеизвестен [2]:

— в уравнение кривой второго порядка

$$ax^{2} + bxy + cy^{2} + dx + ey + 1 = 0$$
 (1)

подставляются последовательно координаты заданных точек, которым инцидентна конструируемая кривая;

— дифференцируя уравнение (1), получаем формулу для вычисления его первой производной

$$y' = -\frac{2ax + by + d}{bx + 2cy + e} \tag{2}$$

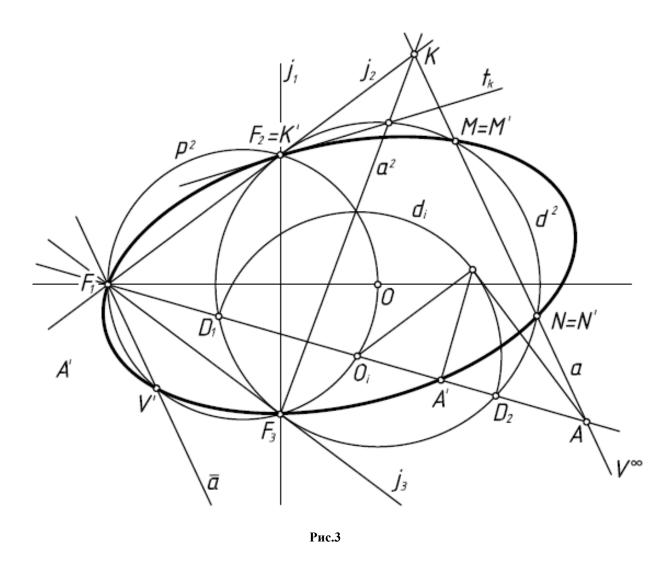
- подставляем в это уравнение значение y' углового коэффициента касательной и координаты точек касания, если в условие задания кривой входит касательная;
- если в условие задания кривой входят трех- и четырехточечные касания, то от уравнения (1) берутся соответственно вторые и третьи производные;
 - подставляются их значения и координаты данных точек.

В результате получается система из пяти уравнений с пятью неизвестными коэффициентами a, b, c, d, e. Решение этой системы определяет искомую кривую второго порядка.

Такой подход не свойственен начертательной геометрии, ибо он не основан на конструктивных построениях. Поэтому, в качестве альтернативы, можно рассмотреть проективный способ образования кривых второго порядка [3] или способ преобразований [4]. По своим возможностям оба способа равносильны. С позиций решения прикладных задач предпочтение следует отдать способу преобразований.

Наиболее простыми по своим конструктивным алгоритмам построения соответственных точек являются центральные преобразования: линейные (гомология) и квадратичные (в частности, преобразование Гирста). В гомологии кривые второго порядка строятся как образы окружности, а в преобразовании Гирста — как образы прямой. Преобразование Гирста имеет несколько специализаций своей фундаментальной системы, что позволяет конструировать все виды пучков кривых второго порядка, показанных на рис.2 [5].

Инволюционное преобразование Гирста J_2 задается (рис.3) центром F_1 и инвариантной (двойной) кривой второго порядка d^2 . В нашем случае для простоты графических построений взята окружность d^2 с центром O (рис.3). Окружность p^2 , построенная на отрезке F_1O как на диаметре, называется предельной и соответствует несобственной прямой p^∞ плоскости. Прямые $l_i \ni F_1$ преобразуются в J_2 сами в себя, поэтому называются самосоответ- ственными или слабоинвариантными. Соответственные точки $A \sim A'$ коллинейны с центром F_1 и составляют гармоническую четверку с точками D_1 , D_2 , где D_1 , $D_2 = F_1A \cap d^2$; $(D_1D_2AA') = -1$.



На рис.3 показан графический алгоритм их построения:

- отмечаются точки D_1 , D_2 пересечения прямой $F_1A(F_1A')$ с инвариантной окружностью d^2 ;
 - строится вспомогательная окружность d_i с центром

$$O_i$$
 = $F_IA(F_IA')\cap p^2$, где D_ID_2 — ее диаметр;

- если точка A находится вне окружности d_i , то из нее проводится касательная к d_i ; из точки касания опускается перпендикуляр на F_1A ; основание A' является соответственной точке A;
- если точка A находится внутри окружности d_i , то соответственная точка A строится в обратной последовательности.

Преобразование J_2 имеет три исключенные точки F_1 , F_2 , F_3 , называемые фундаментальными, или F-точками, для которых нарушается однозначность преобразования. Им, в

отличие от всех остальных точек, соответствуют прямые j_1, j_2, j_3 , называемые принципиальными (P-прямыми);

- центру преобразования F_I соответствует его поляра j_I относительно d^2 ;
- точкам F_2 , F_3 пересечения поляры j_1 с d^2 соответствуют принципиальные прямые

$$F_2 \sim j_2(F_1 F_2), F_3 \sim j_3(F_1 F_3)$$

Если центр F_1 находится вне d^2 , то другие F-точки F_2 , F_3 будут действительными различными; при $F_1 \in d^2$ точки F_2 , F_3 совпадают с F_1 ; если F_1 находится внутри d^2 , то точки F_2 , F_3 будут мнимосопряженными. F-точки F_2 , F_3 совпадут, если окружность d^2 распадется на две изотропные прямые (радиус окружности d^2 будет равен нулю).

Произвольной прямой a плоскости в J_2 соответствует кривая второго порядка a^2 , проходящая через F-точки F_1, F_2 , F_3 и точки $M, N = a \cap d^2$, которые могут быть действительными различными (см.рис.3), совпавшими, если a касается d^2 , и мнимыми, если a пересекает d^2 в мнимых точках. Несобственной точке $V^\infty \in a$ соответствует точка $V' = \overline{a} \cap p^2$, где $\overline{a} \ni F_1, \overline{a} \parallel a$.

Образ a^2 прямой a будет:

- эллипсом (см.рис.3), если прямая \boldsymbol{a} пересекает \boldsymbol{p}^2 в мнимых точках;
- параболой, если \boldsymbol{a} касается \boldsymbol{p}^2 ;
- гиперболой, если a пересекает p^2 в действительных точках.

Из вышеизложенных свойств квадратичной инволюции (преобразования Гирста) J_2 следует конструктивный способ построения двух кривых второго порядка a^2 , b^2 , имеющих показанные на рис.2 варианты взаимного положения. Эти кривые a^2 , b^2 будем конструировать как образы двух прямых a,b относительно той или иной специализации преобразования J_2 .

Рассмотрим схему получения посредством J_2 варианта рис.2.а взаимного положения кривых a^2 , b^2 (рис. 4). Для обеспечения двухточечного касания в F_2 = F_3 в качестве инвариантной окружности d^2 берем две изотропные прямые d^1 , \overline{d}^1 . Тогда предельная окружность p^2 определяется диаметром $F_1(F_2$ = F_3). В этом преобразовании любой паре пересекающихся прямых $a \cap b = K$ соответствуют две кривые второго порядка a^2 , b^2 , имеющие в точке F_2 = F_3 общую касательную t. Она в точке F_2 = F_3 касается p^2 . Кривые a^2 , b^2 дополнительно пересекаются в центре F_1 инволюции J_2 и в точке K'— образе точки K в J_2 .

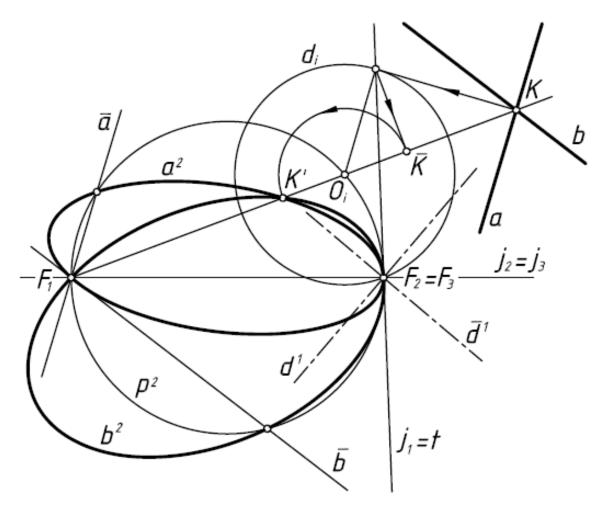


Рис.4

Здесь следует обратить внимание на алгоритм построения точки $K \sim K'$: в отличие от рис.3 здесь вспомогательная окружность d_i (O_i , $R = O_i F_2$) является мнимой. Поэтому точка K' строится как образ точки K в антиинверсии:

- сначала строится точка $\overline{K} \sim K$ в инверсии относительно d_i ;
- затем строится точка K', симметричная точке \overline{K} относительно O_i . Рассмотренный выше аппарат инволюции J_2 позволяет просто конструировать вариант двух двухточечных касаний кривых a^2 , b^2 (рис.2.г). Для этого достаточно точку $K=a\cap b$ взять на P-прямой j_1 F-точки F_1 . Тогда, в соответствии с алгоритмом инволюции J_2 , точки F_1 и K' совпадут и кривые a^2 , b^2 будут иметь здесь общую касательную F_1 K.

Последний вариант двухточечного касания кривых a^2 , b^2 , когда оставшиеся две точки пересечения являются мнимо-сопряженными показан на рис.2.д. Этот вариант можно получить посредством преобразования Гирста, когда его центр F_1 находится внутри инвариантной окружности d^2 . В этом случае, как было отмечено выше, другие две F-точки F_2 , F_3 являются мнимыми точками пересечения $j_1 \sim F_1$ с d^2 . Совпадение точек K', F_1 достигается, как и в предыдущем случае, принадлежностью точки

$$K = a \cap b$$
 P-прямой **j**₁.

Наибольший интерес с точки зрения конструирования плоских динамических обводов второго и третьего порядков гладкости [6, 7] представляют случаи трехточечного (рис.2.б) и четырехточечного (рис.2.в) касания кривых второго порядка.

Эти варианты касания кривых a^2 , b^2 получаются специализированным аппаратом преобразования Гирста, когда его центр F_1 принадлежит инвариантной окружности d^2 . В этом случае здесь совпадают все три F-точки F_1 = F_2 = F_3 . Поэтому образы любых прямых плоскости здесь имеют трехточечное касание, т.е. общую касательную $t = j_1$ и общий круг кривизны p^2 , который (напомним!) является образом несобственной прямой этой плоскости.

Конструирование кривых a^2 , b^2 , имеющих в $F_1 = F_2 = F_3$ четырехточечное касание, также выполняется просто: точку K пересечения прообразов a, b следует взять на j_1 . Тогда образ K' точки K совпадет с $F_1 = F_2 = F_3$, следовательно, искомые кривые a^2 , b^2 будут иметь здесь четырехточечное касание.

Таким образом, все возможные варианты соприкосновения кривых второго порядка, приведенных на рис.2, получаются единым аппаратом квадратичной инволюции Гирста. В данной публикации изложены лишь теоретические основы решения сформулированной задачи. Детально эти вопросы применительно к конструированию плоских гладких обводов рассмотрены в [4]. Теперь эти алгоритмы естественным образом обобщаются на конструирование гладких двумерных обводов из отсеков плоскостей, конических и цилиндричских поверхностей.

Список литературы

- 1. Иванов Г.С. Нормкривая трехмерного пространства как частный случай пересечения двух квадрик. В 3-х т. т.2. // Труды XXII международной научно-технической конференции «Информационные средства и технологии» (18 20 ноября 2014 г.) М.: МЭИ. 2014. С. 51-56
- 2. Савелов А.А. Плоские кривые. Систематика, свойства, применения: Справочное руководство. М.: Физматлит. 1960. 294 с.
- 3. Четверухин Н.Ф. Проективная геометрия: учебник для вузов. 8-е изд. М.: Просвещение. 1969. 368 с.
- 4. Иванов Г.С. Конструирование технических поверхностей. (математическое моделирование на основе нелинейных преобразований). М.: Машиностроение. 1987. 192 с.
- 5. Иванов Г.С. Пучки конических сечений на основе преобразования Гирста. // Краткое содержание и тезисы докладов научно-метод. конференции по прикладной геометрии и инженерной графике. Казань: КИСИ. 1967. С. 28-29
- 6. Иванов Г.С. Конструирование обводов точек на основе квадратичной инволюции. // Известия ВУЗов. Машиностроение. 1969. № 2. С. 5-9
- 7. Иванов Г.С. Исследование обводов конструируемых посредством кремоновых инволюций. // Известия ВУЗов. Машиностроение. 1971. № 10. С. 61-64