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The aim of this note is to clarify the connection between different notions of fundamental solution and
to outline the interplay between transitional probabilities of stochastic processes, evolution semigroups,
evolution equations and their fundamental solutions. We discuss different notions of the fundamental
solution for Lévy processes with infinitely smooth symbol and for stable subordinators. In the case of
Lévy processes with infinitely smooth symbol we find the fundamental solution of the corresponding
forward evolution equation and recover the Duhamel formula for the solution of the Cauchy problem
for this equation. In the case of the 1/2-stable subordinator, we find the transition density by solving
an evolution equation with the (weak) Riemann — Liouville fractional derivative and show that the
Weyl fractional derivative is the negative of the adjoint to the Riemann — Liuoville (weak) fractional
derivative.
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Introduction

In the series of papers [2, 3, 4, 5] atechnique to construct evolution semigroups (7)o generated
by some operators L. was developed. In the frame of the suggested technique the following fact

was used: the identity
[ Tdle ) + Le) dt = —€(s) (1)

is true for each “test-function” £: R — Dom(L) and each s € R. Here Dom(L) is the domain of
the generator L. The object (7}):>0, satisfying the identity (1) with a given operator L was called
Sfundamental solution of 0, + L. It was shown in the paper [1, Th. 4.1] that this object (7}):>o is
indeed the semigroup generated by L and there are no other candidates except J; + L to fulfill
(1) with the given (7});>0. The technique of [2, 3, 4, 5] was used in [1] in particular to discuss
evolution semigroups generated by additive perturbations of the (1/2)-stable subordinator, i.e. of
the operator L equal to the Weyl fractional derivative of order 1/2.

This note is supposed to be an addition to the discussion of [1]. The aim of this note is to clarify
the connection between the notion of fundamental solution presented above and the traditional

notion used in the Theory of Partial Differential Equations and in Functional Analysis (cf. [7])
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and to outline the interplay between transitional probabilities of stochastic processes, evolution
semigroups, evolution equations and their fundamental solutions. To make the picture as clear as
possible we restrict the discussion to the case of Lévy processes with infinitely smooth symbol, e.g.
with compactly supported Lévy measure, and to a class of subordinators. In the first case we find
the (traditional) fundamental solution of the corresponding forward evolution equation, recover
the Duhamel formula for the solution of the Cauchy problem for this equation and arrive at the
identity (1).

In the case of the (1/2)-stable subordinator, the transition density is also obtained explicitly by
solving an evolution equation with the (weak) Riemann—Liouville fractional derivative. To this end
we show that the Weyl fractional derivative is the negative of the adjoint to the Riemann—Liuoville

(weak) fractional derivative and again arrive at the identity (1).

1. Notations and definitions

Below we will use standard techniques of Fourier analysis and the Schwarz theory of distribu-
tions, for which we refer the reader to [7].

Let D(RY) := C>(R?) be the space of test functions, i.e. infinitely smooth functions with
compact supports. Let D’'(R?) be the space of all generalized functions (distributions) on R<, i.e.
the space dual to D(R?) taken with the standard topology. Let S(R?) be the Schwartz space of
tempered functions. For each function ¢ € S(RY) let F|yp] be its Fourier transform defined as
Flel(p) = j; e"p(q) dg and let F~! be its inverse. Denote the space of tempered distributions

R

as S'(R%), S'(R?) C D'(R?). Denote the dual pairing between D’(R?) and D(R?) (and between
S'(R?) and S(RY)) as (-, -). Each locally absolutely integrable function f € L, (R?) corresponds
to a regular generalized function (distribution) f € D'(R?) acting by the formula (f, ) =
j{; f(x)o(z)dz, ¢ € D(R?). We use the same notation (f, g) for the integral fd f(z)g(z)dx for
R R

all such functions f, g: R? — C that the integral is well-defined. Any o-finite Borel measure

u defines a distribution {u ‘ (u, @y = [ go(x),u(dx)}, ¢ € D(RY). The Dirac delta-function §
Rd

is a distribution corresponding to a Borel measure that assigns unit mass to the point x = 0, i.e.

(8, ¢) = ¢(0). Note, that § € S'(RY) C D'(R?).

Fundamental solution. Let £ be a linear operator on D’ (R?) (resp. on S’ (R%)). A fundamental
solution of the operator L is any function £ € D'(R?) (resp. £ € S'(R?)) solving in D’'(R?) (resp.
in §’'(R?)) the equation

LE =,

i.e. for each test function ¢ € D'(RY) (resp. p € S’'(R?)) holds the identity
(LE, @) = »(0).

Pseudo-differential operators on the space of tempered distributions. For each f € S'(R?)
its Fourier transform F[f] is defined by (F[f], ©) = (f, Fl¢]), ¢ € S(R?). The operation
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of multiplication on an infinitely differentiable function ) : R? — C, which grows at infinity
with all its derivatives at most as a polynomial, is also well defined in S'(R%) by the formula
(Wf, o) == (f, ¥p). In the sequel 1) € C*(R?) is a continuous negative definite function, i.e. v
is given by the Levy — Khinchine formula

i) =al0)+itl) v +p- Qo+ | (1= (20 ) Ny, pet

where, for each fixed ¢ € R?, £(q) € R%, Q(q) is a positive semidefinite symmetric matrix and
v(dy) is a measure kernel on R? \ {0} such that
2
/ y N(dy) < oo.

1+ |y|?
S0 L1l

Note, that ¢ grows at infinity with all its derivatives not faster than a polynomial [6, Th. 3.7.13].

A pseudo-differential operator with the symbol ¢ is defined on S(R?) as a composition F~1¢)F.
Note also that F 1y (&)F = Fu(—&)F . The extension of this operator to the space S'(R?) is
defined by

(FTY9WFF, o) = (f, FIW(F)]), »ecSRY, feSRY.
Convolution of distributions. The operation of convolution * is defined for several distribu-
tions f, g € D'(R?) by the formula

(f*xg, v):=<f(x)g(y), p(z+y)>.

Here < -, ->> is the dual pairing between D' (R? x R?) and D(R? x R?), the distribution f(z)g(y) €
D'(RY x R?) is a direct product of f and g and it is supposed that the distribution f(x)g(y) is
correctly defined on all functions p(x +y), p € D(R?), although ¢(z +y) do not lie in D(R? x R?)

any more. In the case f, g are regular distributions, one has

<f(@)g(y), oz +y)> = //f(fv)g(y)@(x +y) dxdy.

R Rd
Fundamental solution of a convolution operator. Let D', C D’(R) be the set of all gen-
eralized functions, whose supports are in [0,+00). The set D’ is a convolution algebra, i.e.
associative and commutative algebra with the operation of convolution *, and the unit is the Dirac
delta-function §. Each element f € D', defines a convolution operator L; = f* such that for all
u € D', we have Ly(u) = f *u. A fundamental solution of a convolution operator L (if exists)
is a function & € D', such that L;(£y) = f * & = 6. Therefore, the fundamental solution &; is

an inverse element to f in the convolution algebra D',

The (weak) Riemann — Liouville fractional derivative. Let 5 € R. Consider a distribution

(i.e. a generalized function) f3 € D', defined by the formula

77(95) B—1 R 0:
o{T@ e e

S BHN>0, <o,
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Here T is the Euler gamma-function, 7 is the Heaviside function and (V) is the Nth derivative
of the generalized function f. Therefore, fi = 7, fo = f{ = 0 and for each 3, v € R we have
fa* fy = fs+,. Hence for each 3 € R the fundamental solution 5 5 of a convolution operator Ly,
exists and £y, = f_s. For 8 = —n,n € N, we have f_,, = 5™ je. Ly (u) = fopu= u™ for
all w € D’_. Moreover, for 3 =n,n € Nwehave f,, = fi *---* frand Ly, (u) =n*---xn*u
is a n-fold antiderivative of the generalized function u. For all u € D', we call Ly,u the (weak)
Riemann — Liouville fractional derivative of © when < 0, and the Riemann — Liouville
fractional integral of © when (3 > 0. For the (weak) Riemann — Liouville derivative of the order
v > 0 we will also use the notation 9, i.e. 0%u(z) := Ly, (u)(z) = f_, * u(z).

Laplace transform of distributions. For each a > 0 define D’_(a) as a set of such functions f
from D/, that f(z)e™* € S = D/, NS'(R) for all s > a. For each a > 0 the set D', (a) is called
the set of originals with the growth rate up to a. Then S\, C D/ (0) C D/, (a1) C D’ (az) for all
0 < a; < ap. Note that S, and D/, (a) are convolution subalgebras of 7', for all a > 0.

Let f € D’ (a). For arbitrary fixed s > a define the Laplace transform £ f] of f by the formula

£lfl(p) = (f(x)e>, nlz)eP=27),

where (-, -) is the dual pairing between the space of generalized functions S’ and the space of test
functions S; = {¢: R — C | n(x)p(x) = n(x)e(x) for some p € S(R)}.

Note that for each 3 € R we have f3 € D/, (a) for all @ > 0 and £[f5] = p~®. Moreover, the
Laplace transform £ transforms a convolution into a product: £[f+g] = £[f]£L[g] for f, g € D', (a).
Therefore, the Laplace transform of the (weak) Riemann — Liouville fractional derivative (of the
order v > 0) of a function v € D', (a) has the form

Llovu] = L£[f_, * u] = p"L[ul.

2. Fundamental solutions, evolution semigroups and transition probabilities

Let { X, }+>0 be a Lévy process on R?. Then the distribution  := Py, of a random variable X
is infinitely divisible and defines a convolution semigroup {u'};>0 on R, The transition function
P,(x, B) of the Lévy process { X }+>¢ is then defined by

P(z,B):=u'(B—2), t>0, rcR’ BecBR?.

Using the convolution semigroup {u'};>0, one can construct two evolution semigroups on the
space C,(R?) of continuous vanishing at infinity functions: the backward semigroup (7}):>( and

the forward semigroup (7} );>0. These semigroups are defined for f € C,.(R?) as follows:

Tif () = E[f(z + X)] /fa:+y (dy) = /f Pz, dy);

Ty f(x) == E[f(z — X,)] /f:r— dy) = | * ().
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Proposition 1. The semigroups 7} and T} can be naturally extended to the space L?(R¢) and

these extensions are adjoint, i.e. for all f, g € L*(R?) one has

(T3 f, 9) = (f, T} g)-

Moreover, operators T} are pseudo-differential operators with symbol e~ and operators 7} are

pseudo-differential operators with symbol e ~*(~) for some continuous negative definite function 1.

Proof. Indeed, for all f, g € O (R?) N L?(R?)

(T.], 9) = /T dx—//fx+y (dy)g(x) dr =
| [ #E)9(z =yt (ay) dz = / f(T 9(2) dz = (. Tg).

By the Bochner theorem there exist a unique continuous negative definite function v such that

Flpu'] = e ™. Then, using the properties of convolution and Fourier transform, one has for
f € SR

Trf = frpt = F 7 FIf « ] = FHFUFW) = FH e LA

i.e. the semigroup 7} is a family of pseudo-differential operators with the symbol e=*. Let now
L be the generator of (7});>¢ and L* be the generator of (7});>0. Hence the generator L* is also a
pseudo-differential operator with the symbol —/. Further, one has for f, g € S(R%)

(f, Trg) = {f, FH e Flgl]) = (Fe " FUf), 9) = (F e OF, 9) = (T, 9),

i.e. the semigroup 7} is a family of pseudo-differential operators with the symbol e~*(~). And
hence the generator L is a pseudo-differential operator with the symbol —/(—-). Moreover, for all
f, g€ S(RY) one has (Lf, g) = (f, L*g). The proposition is proved.

Since ¢ € C°(R?) grows at infinity with all its derivatives not faster than a polynomial then for
all ¢ € S(R?) the functions F ! [—w]: [go]] and F! {—1/)(—-).7: [gp]} are well defined and belong
again to S(R?). Hence one can define the operators L and L* on the space S'(R?) by the formulas
Lf:=F1! {—1/1(—-).7:[f” and L*f := F~1 [—w]:[f” respectively, i.e. for each f € S'(R?) and
each ¢ € S(R?) one has:

(L}, ) = (FH =0 Flf]], o) = (f, F|=0F'l]) = (f, Le)
and vice versa (Lf, @) := (f, L*y).

Connections between semigroups, evolution equations and their fundamental solutions.

Consider now the Cauchy problem in R¢

s
Sta) = L f (1), o)

fQ0,2) = fo(x).
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Here fy € S(R?) and the problem is well-posed in L?(R?). The theory of evolution semigroups

provides the solution of (3) in the form

f(t, ) =T folx)-

This classical Cauchy problem (3) can be also transformed into the generalized one in a standard
way (see [7]): let f(t,z) be a solution of (3). For each t < 0 and all x € R? define f(t,z) := 0
and consider the function f as an element of S’'(R x R?). Then the weak derivative 9, f of f with

respect to the variable ¢ is calculated as follows:

0 (t,) = 0 (6,2) + fo(w)3(0),

of

here B is the classical derivative and f is the initial data of the Cauchy problem (3). And hence

the solution of the classical Cauchy problem (3) solves the equation

O f(t,x) — L™ f(t,x) = fo(x)d(t) 4)

in S'(R x RY).
Assume that a fundamental solution £ of the operator 9; — L* in §'(R x R?) exists. If L* is
a local operator than our assumption is true (see [7]) and the solution of (4) is given then by the

Duhamel formula
[t x) = [E@ )] * [fo(z)d ()] = [E(E, ) * fol(x). (5)
Proposition 2. The Duhamel formula (5) is also true in the case when L* is the generator of

the Lévy process X;, whose symbol ¢ is of class C*°(R?).
Proof. Letus solve the equation 9,€ — L*E = § in S'(R x R?). Apply the Fourier transform with

~

respect to the variable z. Let F[E(t,-)](y) = £(t,y). Then we have F[D,E(t,)](y) = E(t,y),
FIL*E(t, )] (y) = —b(y)[E(t, y)] and F[6(L,-)](y) = (t). Therefore, we obtain

atg(t’ y) + ¢(y)g(t, y) - 5(t)7

ie. £ (-,y) is the fundamental solution of an ordinary (with respect to the variable ¢, y is a
parameter) differential operator Ey = 0, + ¥(y). Let us find the fundamental solution of Ey
using the Laplace transform with respect to the variable t. Let £[E(t,y)](s) = E(s,y). Then
L10,E(t,y)](s) = sE(s,y) and £[6(t)](s) = 1. Therefore, we get

sE(s,y) + ¥ (y)E(s,y) = 1,

1.e. .
E(s,y) = m

Hence £(t,y) = e~"*®)y(t) with the Heaviside function 7. And, therefore,

E(t,z) = n(t)F e ] (x).
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Since 1(-) is a continuous negative definite function, the function e*¥() is positive definite and
its inverse Fourier transform is the measure p', i.e. £(¢,-) = n(t)u'. Therefore, for all ¢ > 0 and
r € R?

[S(t, ) * fo](l‘) - /fO(x - y)ﬂt(dy) = E*fO(x) - f(t,$)7

i.e. the Duhamel formula (5) indeed solves the Cauchy problem (3).

Connection between different notions of the fundamental solution. The identity 0, —L*E =
§in S'(R x R?) means that for each ¢ € S(R x R?) one has

(0 — L&, @) = (4, ) = 9(0,0).

Let us fix s € R, € RY. With a linear change of variables t — ¢t — s, y — y — x one can show
that the generalized function (distribution) & , € S'(R x R?),

Esx(t,dy) :=E(t — s,dy — x),

solves in S'(R x R?) the equation 0, , — L*E, . = 05, with the shifted Dirac delta-function
Js,. such that (0,2, ¢, =)¢(s,x). The function &, is usually called a fundamental solution with
singularity at (s, z). Therefore, for each ¢ € S(R x R?) one has:

o(s,x) = (0i&sx — L*Es 1, o, =)(Esz, —Opp — Lip, =)
- /dt/[aw(t, y) + Lo(t,y)|n(t — s)u'~*(dy — z) =
- / /[@90(?5, y) + Lo(t, y)| Pi—s(z, dy) dt.

Therefore, the identity (1) (with £(¢) := ¢(t, -)) is recovered for this particular case in the form:

| [10eet) + Lot )] Pres(o, dy) dt = —p(s,2), o € C=(R x RY) C S(R x RY).

s Rd
3. Fractional derivatives and fundamental solutions

Define now the Weyl fractional derivative (0%)* of order v € (0,1) for all test functions
¢ € D(R) by the formula

+o0

@) (@) = gy [ =) W

T

Proposition 3. The operator —(0%)* is adjoint to the weak Riemann — Liouville derivative
(0%) in the following sense: for all ¢ € D(R) and g € D', (R) C D’'(R) one has

(079, @) = —(g, (07)"p).
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Proof. Indeed, using the rule of differentiation of a convolution one has

(09, 0) = (f-vx9, 0) =(fi_u 9, ) = ((frevx9), ©) = —(g* fi, ) =
— <fiW)g(@), P (@ +y)> = (g(@), (fin, ¢z +))) = =g, ()7¢).

Here we used the fact that, since f,_, € Lj .(R) is a regular distribution, one has

—+00

imws e+ = [ Jislidee )y = gy [ @ = @)

T

Connection between different notions of the fundamental solution. Let D', (R?) be the set of
generalized functions from D’(R?) having supports in the quadrant {(¢,z) € R? | ¢t > 0, = > 0}.
Let v € (0,1). Let there exists a function £ (¢, z) € D', (R?) which is a fundamental solution of
the operator L, := 0; + 0% with the weak Riemann — Liouville fractional derivative 97, i.e. £”
solves in D'(R?) the equation L,£” = J. As in the previous Subsection fix s € R and y € R.
With a linear change of variables ¢t — t — s, x — = — y one can show that the generalized function
(distribution) £¥, € D'(R?),

& (tx) =E(t—s,x—y),

1.e.
(Edy, () = (&7, (- + 5, +y)),

solves in D'(IR?) the equation 9,E¥, + JyE,, = 0, with the shifted Dirac delta-function .

Hence
©(8,y) = (0sy, v) = (OELY + 07Esy, @) = —(EXy, Owp + (97) ).

Assume now that £ is a regular distribution (it is so, e.g., for v = 1/2 due to Lemma below).
Then for each test function ¢(t, ) € D(R?) the function £¥ (¢, x) satisfies the identity

| €t = s =yt + @) plta)dedt = —p(s,), s, yeR (6

This formula once again recovers the identity (1) for the case of v-stable subordinators.

Lemma 1. A fundamental solution of the operator L, = J; + 0 for v = 1/2 is the function

+2

e m=n(t)n(z).

EV2:(t, x) =
a3

Proof. Let us solve the equation L,£” = ¢ in D'(R?). This equation is equivalent to
OEY (t,x) + L&, (t,x) = d(t)d(z). Applying Laplace transform with respect to the variable x to
the generalized functions in both sides of the last equation and denoting F, (t,p) = £[EY(t,-)](p)

we get
atEV(tap) +pVEV(t7p) = 5(t>
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Applying Laplace transform with respect to the variable ¢ to the generalized functions of the variable

t in both sides of the last equation and denoting G, (s, p) = £[E, (-, p)](s) we get
sGy(s,p) +p"G,(s,p) = 1.

Therefore, G, (s,p) = +1 Hence using the tables of Laplace transforms, one gets
s+ pY

E,(t,p) = e " n(t),

ie. Eyyo(t,p) = e 'vPy(t). Once again, using the tables of Laplace transforms one gets that

+2

e w=n(t)n(x).

t
Eiplt,x) =
1/2(6:) 2/ a3

Since the function & /»(t, ) is a regular distribution and belongs to the set D, (R?) then the
equality (6) for v = 1/2 and & /»(¢, z) holds.
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KiiroueBblie CJIOBAa: 3BOJIOMMOHHBIC TONYTPYIIbl; GyHIaMEHTAIbHOE pellieHre; APOoOHas MPOU3BO/I-
Hast; CyOOpaAUHATOD

B cepun nenaBHux pabot K. bornana, B. Xancena, T. SIky6osckoro, K. Illunkosckoro, C. Cu-
nopa [2, 3, 4, 5] Oblia pa3BuUTa TEXHUKA NOCTPOEHUS 3BOJIIOLIMOHHBIX MOIYTPYIII, TOPOXKIAECHHBIX
HEKOTOPBIMHU 3aJaHHBIMH omepaTopaMu. B pamkax npeyiokeHHOW TEXHUKHU HMCIIOJIb30BajICs TOT
(axT, 4T0 MOJTYrpyINa sSBISIETCS SIPOM OTPHULATEIHHOIO JIEBOTO OOPAaTHOTO OIEpaTopa K CyMMe
BpPEMEHHOH MPOM3BOAHON U T€Heparopa 3TOW MOJIYyrpymnsl. UM 3T0 sapo Ha3bIBaIOCh (CIaOBIM)
(yHIaMEHTAIbHBIM PEIIEHUEM JaHHOM cyMMbl. OTOT (akT Obu1 Joka3aH B crartke K. bornana,
S.A. Bytko u K. [llunkoBckoro [1], a iMeHHO, OBLTO TIOKa3aHO, YTO MOJYTPYIIIa, MOPOXKICHHAS
3aJJaHHBIM ONEPaTOPOM, IEUCTBUTENIBHO SABIsIETCS (C1a0biM) (pyHIaMEHTaIbHBIM PELICHUEM YIIO-
MSIHYTOH BBIILIE CYMMBI, ¥ TOJIBKO €e. B yka3anHoil crarbe TexHuka K. borgana u ero coaBTropoB
Obl1a KCIIOIB30BaHA TSl 00CYKACHUS 3BOJIIOLMOHHBIX MOYTPYII, HOPOXKICHHBIX aJJUTHBHBIMU
BO3MyLIeHHsMH (1/2)-ycToiiunBOro cybopaAnHaTopa, T.¢. orneparopa IpoOHO# mpou3BoaHOM Beiis
nopsiaka 1/2.

Hacrosimast pabota ciyXKuT JOMOJHEHHEM K BhILIEHa3BaHHOU cTaTthe. Llenbio sBnsercs mpo-
SCHECHHE B3aMMOCBS3U MEXay (crnabbiM) (QyHIaMEHTaIbHBIM PELICHUEM, OMHMCAHHBIM BBIIIE, H
TPaJULIMOHHBIM MOHATHEM (YHAaMEHTAJIBHOTO PEIIEHUs, UCIIOIb3YEMbIM B TEOPUU YPaBHEHUH C
YACTHBIMM IIPOM3BOAHBIMHU U B (PyHKLIMOHAJILHOM aHanu3e. B pabore Taxke oOpHCOBaHBI COOT-
HOILIEHUS] MEKY [IEPEXOIHBIMU BEPOSATHOCTSIMU CIy4YaiHBIX IIPOLIECCOB, IBOIIOLIMOHHBIMH I10JTY-
rpyInamMu, 3BOJIOIUOHHBIMU YPAaBHEHUAMHU U UX (DYHIAMEHTAJIbHBIMU pelIeHUAMHU. Pa3nuunble
NOHATHS (DyHJAMEHTAIBHOTO pelIeHust 00CyKIaroTcs i mpoueccoB JIeBu ¢ OeCKOHEUHO Taj-
KHM CHMBOJIOM M JJIsl YCTOMUUBBIX CyOOpauHaTopoB. B ciydae mporeccoB JleBu ¢ 6eckoHEUHO
[JIaJIKUM CHMBOJIOM HalJ€HO (yHIaMEHTAJIbHOE PEIlIEHHE COOTBETCTBYIOIIETO MPSIMOIO 3BOJIO-

IIMOHHOTO YpaBHEHHUS U yCTaHOBIEHA GopMyJIst J{roamens T perieHusi COOTBETCTBYIOIIEH 3a1aun
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Kom. B ciyuae (1/2)-ycroitunBoro cybopanHaTopa HaiineHo GyHIaMeHTanbHoe perieHue (Te-
pexosiHasi BEpOSTHOCTh) MYTEM PEUISHUS SBOIIOIMOHHOTO YpaBHEHHUs co (cinaboit) ApoOHOI mpo-
n3BOMHON Pumana — JInyBWILISL M TTOKa3aHO, YTO IPpOOHAs MPOM3BOAHAsT Bels siBisieTcst MUHYC

COIPSHKEHHBIM OTIepaTopoM K (crmaboit) npousBoanoi Pumana — JlnyBusis.
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