## ИНЖЕНЕРНЫЙ ВЕСТНИК

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл No. ФС77-51036. ISSN 2307-0595

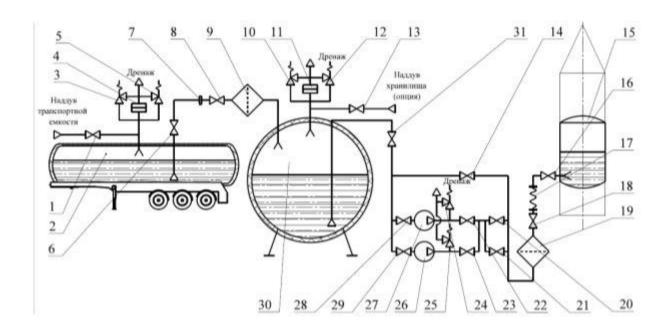
## Особенности построения заправочной системы сжиженного природного газа на стартовом комплексе

# 12, декабрь 2014

Бармин И. В., Королев Н. С., Чугунков В. В.

УДК: 629.7.085; 629.764.7

Россия, МГТУ им. Н.Э. Баумана <u>chv.home@mail.ru</u>


Создание ракетных комплексов сверхтяжелого класса и многоразовых ракетнокосмических систем нового поколения может быть основано на применении ракетных двигателей, работающих на перспективном ракетном горючем – сжиженном природном газе (СПГ) и жидком кислороде [1,2].

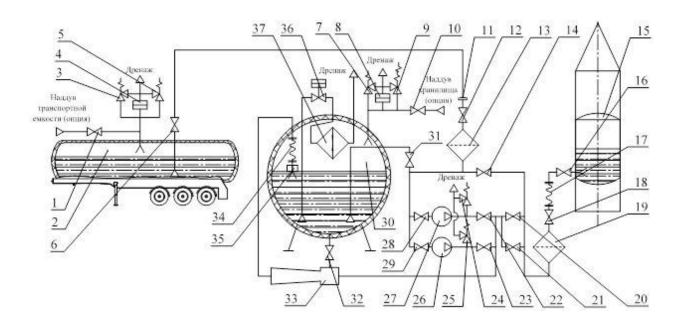
Перспективность применения СПГ в ракетно-космической технике обусловлена его преимуществами перед ракетным керосином (более высокая энергетика, меньшая стоимость и более высокая чистота при сгорании, самопроизвольное испарение и удаление остатков топлива из топливных магистралей ракетных блоков после выключения двигателей, что облегчает условия их многократного использования) [3].

Низкая температура кипения СПГ не позволяет обеспечить его хранение в открытых хранилищах без потерь. Данный вид горючего является смесью метана и других более тяжелых углеводородов, плотность и температура кипения которой зависит от концентрации входящих в нее составляющих [4]. В процессе хранения СПГ происходит изменение его состава, плотности и температуры кипения за счет испарения более легкого компонента - метана. Данные факторы при пополнении хранилища, имеющего остатки топлива, новой порцией СПГ, с плотностью и температурой, отличающейся от аналогичных параметров в остатке топлива, могут приводить к стратификации СПГ в хранилище с образованием макрослоев топлива с различной плотностью [5,6]. При последующем протекании тепломассообменных процессов в макрослоях СПГ, приводящих к изменению их плотности, возможно возникновение режима интенсивного перемешивания, получившего название «ролловер», с интенсивным испарением больших масс СПГ и повышением давления в хранилище, способным привести к его разрушению с катастрофическими последствиями [3,7].

Отмеченные обстоятельства при использовании системы заправки ракеты на стартовом комплексе, построенной по традиционной схеме (рис.1) могут приводить к возникновению режима ролловера СПГ в хранилище с выкипанием метана и повышением давления

в газовой подушке резервуара. Данный режим может возникать после слива топлива из баков ракеты при отмене пуска и при пополнении хранилища новой порцией СПГ, физические параметры которой отличаются от находящегося топлива в хранилище.




**Рис.1.** Традиционная схема системы заправки топливного бака ракеты из стационарного хранилища стартового комплекса.

1,6,8,13,14,16,18,20,21,22,23,28,29,31 — отсечной клапан; 2 — транспортная емкость; 3,5,10,12,24,25 — предохранительный клапан; 4,11 — разрывная мембрана; 7 — стыковочный порт заправочной системы; 9,19 — очистные фильтры; 15 — топливный бак изделия; 17 — гибкий трубопровод; 26,27 — центробежный насос; 30 — хранилище топлива.

Из-за разницы плотности имеющегося и поступающего в хранилище СПГ может происходить его разделение на два горизонтальных макрослоя. Нижний слой в процессе хранения за счет внешнего теплопритока перегревается и аккумулирует часть тепла, не успевая передать его на верхний. При выравнивании плотностей слоев происходит их интенсивное перемешивание, а аккумулированная энергия тратится на фазовый переход части жидкости, что служит причиной увеличения давления в газовой подушке резервуара. Рост давления может приводить к разрушению хранилища и разливу компонента, а при возникновении искры и к пожару на стартовом комплексе.

Традиционное построение заправочной системы может быть модифицировано за счет применения специальных средств и методов построения, учитывающих особенности СПГ и позволяющих исключить возникновение режима ролловера или уменьшить последствия его возникновения, повышая безопасность эксплуатации хранилищ в составе заправочных систем стартовых комплексов.

Методы исключения режима ролловера при эксплуатации хранилищ СПГ в составе заправочного оборудования стартовых комплексов могут быть основаны на поддержании стабильного состава СПГ в хранилище и организации перемешивания топлива при выполнении операций пополнения заправочной системы новыми порциями топлива и при сливе его из топливных баков ракеты при отмене старта. Реализация данных методов может быть достигнута при схемном построении заправочной системы СПГ на стартовом комплексе, приведенном на рис.2.



**Рис. 2.** Принципиальная схема заправочной системы, позволяющей исключить возникновение режима ролловера и поддерживать стабильный состав СПГ в хранилище.

1,6,7,12,14,16,18,20,21,22,23,28,29,31,32 — отсечной клапан; 2 — транспортная емкость; 3,5,8,10,24,25 — предохранительный клапан; 4,9 — разрывная мембрана; 11 — стыковочный порт заправочной системы; 13,19 — очистные фильтры; 15 — топливный бак ракеты; 17,34 — гибкий трубопровод; 26,27 — центробежный криогенный насос; 30 — хранилище СПГ; 33 — струйный насос; 35 - поплавок.

При длительном хранении СПГ в емкости-хранилище происходит его стратификация, а именно – образуются слои в придонной области с более высокой плотностью и концентрацией тяжелых углеводородов за счет протекания тепломассообменных процессов [6].

Для поддержания стабильного состава СПГ при его хранении возможно применение в хранилище заправочной системы испарителя-конденсатора (37), установленного в паровом пространстве резервуара, в котором за счет испарения компонента из нижней части резервуара, содержащей больший процент тяжелых углеводородов, осуществляется конденсация метана в паровом пространстве хранилища.

Для исключения возникновения режима ролловера СПГ в хранилище и обеспечения безопасных условий его хранения необходимо предотвращение образования макрослоев

топлива с различной плотностью за счет организации его перемешивания. Обеспечение надежного перемешивания топлива при выполнении операций пополнения хранилища новыми порциями топлива и при сливе его из топливных баков ракеты при отмене старта может быть реализовано посредством введения в состав заправочной системы струйного насоса (33) [8]. Это позволяет смешивать топливо, подаваемое в хранилище через струйный насос от внешнего источника (транспортной емкости или из баков ракеты при сливе топлива), с топливом, поступающим из донной области хранилища в камеру смешения струйного насоса с организацией поступления перемешенного топлива в верхнюю область хранилища.

Рассмотренное построение заправочной системы сжиженного природного газа позволяет поддерживать требуемую кондицию данного вида ракетного горючего при его хранении и повышает безопасность эксплуатации системы за счет исключения возникновения режима ролловера в хранилище СПГ стартового комплекса.

## Список литературы

- 1. Бармин И.В., Зверев В.А., Украинский А.Ю., Чугунков В.В., Языков А.В. Обоснование некоторых основных характеристик стартового оборудования космодромов XXI века. Инженерный журнал: Наука и инновации. Электронное научно-техническое издание №3, 2013г.;
- 2. Кузин А.И., Рачук В.С., Коротеев А.С., и др. Обоснование выбора компонентов ракетного топлива для двигательных установок первой ступени многоразовой ракетно-космической системы / Научно-технический журнал Авиакосмическая техника и технология №1, 2010–М.: ИТЭП, 2010.с. 19 55.
- 3. Королев Н.С., Бармин И.В., Чугунков В.В. Исследование режимов эксплуатации хранилищ сжиженного природного газа в составе оборудования наземных комплексов. Электронное научно-техническое издание «Наука и образование» №3, 2014 г.;
- 4. Бармин И.В., Кунис И.Д. Сжиженный природный газ: вчера, сегодня, завтра. Изд-во МГТУ им. Н.Э. Баумана, 2009;
- 5. Королев Н.С. Анализ возникновения явления «ролловер» в системах хранения сжиженного природного газа // Актуальные проблемы российской космонавтики: Материалы XXXVI академических чтений по космонавтике М.: Комиссия РАН, 2012. С. 353-354.
- 6. Королев Н.С. К построению математической модели явления ролловер в хранилище СПГ 77-30569/345773 // Электронное научно-техническое издание «Наука и образование» ISSN 1994-0408, март 2012.
- 7. May E. F, Fluid Science for improved LNG Production and shipping / Presentation of the UNIVERSITY OF WESTERN AUSTRALIA, 2010.
- 8. Бармин И.В., Королев Н.С., Чугунков В.В. Система заправки сжиженным природным газом. Патент RU 144294 U1, 2014, Бюл. № 23.