Другие журналы

электронный научно-технический журнал

ИНЖЕНЕРНЫЙ ВЕСТНИК

Издатель: Общероссийская общественная организация "Академия инженерных наук им. А.М. Прохорова".

Задача о трехмерной упаковке и методы ее решения. Обзор

Инженерный вестник # 06, июнь 2015
УДК: 658.7
Файл статьи: Yudakov_P.pdf (955.76Кб)
автор: Юдаков П. В.

Задача трехмерной упаковки представляет из себя естественную эволюцию классической одномерной и двухмерной задачи. Наиболее часто используемое практическое применение данной задачи – транспортировка груза, который будет упакован в контейнеры, кузовы транспортных средств или упаковка груза на паллеты. Целью данной работы является освещение и структурирование знаний, накопленных в этой области за время существования и активного развития рассматриваемой задачи. В статье представлена классификация задачи трехмерной упаковки и возникающих в реальной жизни ограничений, обзор существующих методов и подходов для решения задачи и проведена оценка их эффективности.

Список литературы
  1. Bortfeldt A., W¨ascher G. Constraints in container loading: a state-of-the-art review // European Journal of Operational Research. 2013. Vol. 229. Is.1. P. 1–20. doi :10.1016/j.ejor.2012.12.006
  2. Gehring H., Bortfeldt A. A genetic algorithm for solving the container loading problem // International Transactions in Operational Research. 1997. Vol 4. Is.5-6. P. 401–418. doi:10.1016/S0969-6016(97)00033-6
  3. Wang Z., Li K.W., Levy J.K. A heuristic for the container loading problem: a tertiary-tree-based dynamic space decomposition approach // European Journal of Operational Research. 2008. Vol 191. Is.1. P. 86–99. doi:10.1016/j.ejor.2007.08.017
  4. Egeblad J., Pisinger D. Heuristic approaches for the two- and three-dimensional knapsack packing problem // Computers & OperationsResearch. 2009. Vol. 36. Is. 4. P. 1026–1049. doi:10.1016/j.cor.2007.12.004
  5. Haessler R.W., Talbot F.B. Load planning for shipments of low density products // European Journal of Operational Research. 1990. Vol 44. Is.2. P. 289– 299. doi:10.1016/0377-2217(90)90364-H
  6. Chien C.F., Deng, J.F. A container packing support system for determining and visualizing container packing patterns // Decision Support Systems. 2004. Vol 37. № 1. P. 23–34. DOI: 10.1016/S0167-9236(02)00192-6
  7. Scheithauer G. Algorithms for the container loading problem // Operations Research Proceedings. 1991. P. 445–452. DOI: 10.1007/978-3-642-46773-8_112
  8. Morabito R., Arenales M. An AND/OR-graph approach to the container loading problem // International Transactions in Operational Research. 1994. Vol. 1. Is. 1. P. 59–73. doi:10.1016/0969-6016(94)90046-9
  9. Parreño F., Alvarez-Valdes R., Oliveira J., Tamarit J. Neighborhood structures for the container loading problem: a VNS implementation // Journal of Heuristics. 2010. Vol. 16. Is. 1. P. 1–22. DOI:10.1007/s10732-008-9081-3
  10. Parreño F., Alvarez-Valdes R., Tamarit J.M., Oliveira J.F. A maximal-space algorithm for the container loading problem // INFORMS Journal on Computing. 2008. Vol. 20. Is. 3. P. 412–422.
  11. Bischoff E.E., Ratcliff M.S.W. Issues in the development of approaches to container loading // Omega-international Journal of Management Science. 1995. Vol. 23. Is. 4. P. 377–390. DOI:10.1016/0305-0483(95)00015-G
  12. Lai K.K., Xue J., Xu B. Container packing in a multi-customer delivering operation // Computers & Industrial Engineering. 1998. Vol. 35. In. 1-2. P. 323–326. doi:10.1016/S0360-8352(98)00085-0
  13. Ren J., Tian Y., Sawaragi T. A tree search method for the container loading problem with shipment priority // European Journal of Operational Research. 2011. Vol. 214. Is. 3. P. 526–535.doi:10.1016/j.ejor.2011.04.025
  14. Eley M. A bottleneck assignment approach to the multiple container loading problem // OR Spektrum. 2003. Vol. 25. Is. 1. P. 45–60. DOI: 10.1007/s002910200113
  15. George J.A., Robinson D.F. A heuristic for packing boxes into a container // Computers & Operations Research. 1980. Vol. 7. Is. 3. P. 147–156. doi:10.1016/0305-0548(80)90001-5
  16. Bischoff E.E., Marriott M.D. A comparative evaluation of heuristics for container loading // European Journal of Operational Research. 1990. Vol. 44. Is. 2. P. 267–276. DOI: 10.1016/0377-2217(90)90362-F
  17. Moura A., Oliveira J.F. A GRASP approach to the container-loading problem // IEEE Intelligent Systems. 2005. Vol. 20. P. 50–57. DOI: 10.1109/MIS.2005.57
  18. Chien C.F., Wu W.T. A recursive computational procedure for container loading // Computers & Industrial Engineering. 1998. Vol. 35. Is. 1-2. P. 319–322. doi:10.1016/S0360-8352(98)00084-9
  19. Pisinger D. Heuristics for the container loading problem // European Journal of Operational Research. 2002. Vol. 141. Is. 2. P. 382–392. DOI: 10.1016/S0377-2217(02)00132-7
  20. Gehring H., Menschner K., Meyer M. A computer-based heuristic for packing pooled shipment containers // European Journal of Operational Research. 1990. Vol. 44. Is. 2. P. 277–288. doi:10.1016/0377-2217(90)90363-G
  21. Davies A.P., Bischoff E.E. Weight distribution considerations in container loading // European Journal of Operational Research. 1999. Vol. 114. Is. 3. P. 509– 527. doi:10.1016/S0377-2217(98)00139-8
  22. Bortfeldt A., Gehring H. A hybrid genetic algorithm for the container loading problem // European Journal of Operational Research. 2001. Vol. 131. Is. 1. P. 143– 161. doi:10.1016/S0377-2217(00)00055-2
  23. Bortfeldt A., Gehring H. Applying tabu search to container loading problems // (Symposium on Operations Research (SOR’97) Jena, September 3–5, 1997). Operations Research Proceedings 1997. Springer Berlin Heidelberg. 1998. Vol. 1997, 1998. P. 533–538. DOI: 10.1007/978-3-642-58891-4_84
  24. Bortfeldt A., Gehring H., Mack D. A parallel tabu search algorithm for solving the container loading problem // Parallel Computing. 2003. Vol. 29. Is. 5. P. 641–662. doi:10.1016/S0167-8191(03)00047-4
  25. Lim L.C.A., Ma H., Xu J., Zhang X. An iterated construction approach with dynamic prioritization for solving the container loading problems // Expert Systems with Applications. 2012. Vol. 39. Is. 4. P. 4292–4305. doi:10.1016/j.eswa.2011.09.103
  26. Ratcliff M.S.W, Bischoff E.E. Allowing for weight considerations in container loading // OR Spektrum. 1998. Vol. 20. Is. 1. P. 65–71. DOI: 10.1007/BF01545534
  27. Loh T.H., Nee A.Y.C. A packing algorithm for hexahedral boxes // Proceedings of the Conference of Industrial Automation. Singapore. 1992. P. 115–126.
  28. Lodi A., Martello S., Vigo D. Heuristic algorithms for the three-dimensional bin packing problem // European Journal of Operational Research. 2002. Vol. 141. Is. 2. P. 410–420. doi:10.1016/S0377-2217(02)00134-0
  29. Liu J., Yue Y., Dong Z., Maple C., Keech M. A novel hybrid tabu search approach to container loading // Computers & Operations Research. 2011. Vol. 38. Is. 4. P.797–807. doi:10.1016/j.cor.2010.09.002
  30. Ren J., Tian Y., Sawaragi T. A tree search method for the container loading problem with shipment priority // European Journal of Operational Research. 2011. Vol. 214. Is. 3. P. 526–535.doi:10.1016/j.ejor.2011.04.025
  31. Zhang D., Peng Y., Leung S.C.H. A heuristic block-loading algorithm based on multi-layer search for the container loading problem // Computers & Operations Research. 2012. Vol. 39. Is. 10. P. 2267–2276. doi:10.1016/j.cor.2011.10.019
  32. Lai K.K., Chan J.W.M. Developing a simulated annealing algorithm for the cutting stock problem // Computers & Industrial Engineering. 1997. Vol. 32. Is. 1. P. 115–127. doi:10.1016/S0360-8352(96)00205-7
  33. Gonçalves J.F., Resende M.G.C. A parallel multi-population biased random-key genetic algorithm for a container loading problem // Computers & Operations Research. 2012. Vol. 39. Is. 2. P. 179–190. doi:10.1016/j.cor.2011.03.009
  34. Zhu W., Lim A. A new iterative-doubling Greedy-Lookahead algorithm for the single container loading problem // European Journal of Operational Research. 2012. Vol. 222. Is. 3.P. 408–417. doi:10.1016/j.ejor.2012.04.036
  35. Zhu W., Oon W.C., Lim A., Weng Y. The six elements to block-building approaches for the single container loading problem // Applied Intelligence. 2012. Vol. 37. Is. 3. P. 431–445. doi:10.1007/s10489-012-0337-0
  36. Araya I., Riff M.C. A beam search approach to the container loading problem // Computers & Operations Research. 2014. Vol. 43. P. 100–107. doi:10.1016/j.cor.2013.09.003
  37. Eley M. Solving container loading problems by block arrangement // European Journal of Operational Research. 2002. Vol. 141. Is. 2.P. 393–409. doi:10.1016/S0377-2217(02)00133-9
  38. Lim A., Rodrigues B., Wang Y. A multi-faced buildup algorithm for three-dimensional packing problems // Omega. 2003. Vol. 31. Is. 6.P. 471–481. doi:10.1016/j.omega.2003.08.004
  39. Ngoi B.K.A., Tay M.L., Chua E.S. Applying spatial representation techniques to the container packing problem // International Journal of Production Research. 1994. Vol. 32. Is. 1. P. 111–123. DOI: 10.1080/00207549408956919
  40. Chua C.K., Narayanan V., Loh J. Constraint-based spatial representation technique for the container packing problem // Integrated Manufacturing Systems. 1998. Vol. 9. Is. 1.P. 23–33. DOI: 10.1108/09576069810196814
  41. Chien C.F., Lee C.Y., Huang Y.C., Wu W.T. An efficient computational procedure for determining the container loading pattern // Computers & Industrial Engineering. 2009. Vol. 56. Is.3. P. 965–978. doi:10.1016/j.cie.2008.09.019
  42. Bischoff E.E. Three-dimensional packing of items with limited load bearing strength // European Journal of Operational Research. 2006. Vol. 168. Is. 3. P. 952– 966. doi:10.1016/j.ejor.2004.04.037
  43. Martello S., Pisinger D., Vigo D. The three-dimensional bin packing problem // Operations Research. 2000. Vol. 48. Is. 2. P. 256–267. doi:10.1287/opre.48.2.256.12386
  44. Crainic T.G., Perboli G., Tadei R. Extreme point-based heuristics for three-dimensional bin packing // INFORMS Journal on Computing. 2008. Vol. 20. Is. 3. P. 368–384.
  45. Huang W., He K. A caving degree approach for the single container loading problem // European Journal of Operational Research. 2009. Vol. 196. Is. 1. P. 93– 101. doi:10.1016/j.ejor.2008.02.024
  46. Huang W., He K. A new heuristic algorithm for cuboids packing with no orientation constraints // Computers & Operations Research. 2009. Vol. 36. Is. 2. P. 425–432. doi:10.1016/j.cor.2007.09.008
  47. He K., Huang W. A caving degree based flake arrangement approach for the container loading problem // Computers & Industrial Engineering. 2010. Vol. 59. Is. 2. P. 344–351. doi:10.1016/j.cie.2010.05.007
  48. He K., Huang W. An efficient placement heuristic for three-dimensional rectangular packing // Computers & Operations Research. 2011. Vol. 38. Is.1. P. 227– 233. doi:10.1016/j.cor.2010.04.015
  49. Han C.P., Knott K., Egbelu P.J. A heuristic approach to the three dimensional cargo loading problem // Computers & Industrial Engineering. 1986. Vol. 11. Is. 1 - 4. P. 109–113. doi:10.1016/0360-8352(86)90059-8
  50. George J.A. A method for solving container packing for a single size of box // Journal of the Operational Research Society. 1992. Vol. 43. Is. 4. P. 307–312. DOI:10.1038/sj/jors/0430402
  51. Lins L., Lins S., Morabito R. An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container // European Journal of Operational Research. 2002. Vol. 141. Is. 2. P. 421–439. doi:10.1016/S0377-2217(02)00135-2
  52. Xue J., Lai K.K. Effective methods for a container packing operation // Mathematical and Computer Modelling. 1997. Vol. 25. Is. 2. P. 75–84. doi:10.1016/S0895-7177(97)00008-3
  53. Hemminki J. Container Loading with Variable Strategies in Each Layer // Institute for Applied Mathematics, University of Turku, Turku, Finland. 1994.
  54. Gehring H., Bortfeldt A. A parallel genetic algorithm for solving the container loading problem // International Transactions in Operational Research. 2002. Vol. 9. Is. 4. P. 497–511. DOI:10.1111/1475-3995.00369
  55. Wu Y., Li W., Goh M., De Souza R. Three-dimensional bin packing problem with variable bin height // European Journal of Operational Research. 2010. Vol. 202. Is. 2.P. 347–355. doi:10.1016/j.ejor.2009.05.040
  56. Gonçalves J.F., Resende M.G. A biased random key genetic algorithm for 2D and 3D bin packing problems // International Journal of Production Economics. 2013. Vol. 145. Is. 2. P. 500–510. doi:10.1016/j.ijpe.2013.04.019
  57. Dereli T., Das G.S. A hybrid ‘bee(s) algorithm’ for solving container loading problems // Applied Soft Computing. 2011. Vol. 11. Is. 2. P. 2854–2862. doi:10.1016/j.asoc.2010.11.017
  58. Mack D., Bortfeldt A., Gehring H. A parallel hybrid local search algorithm for the container loading problem // International Transactions in Operational Research. 2004. Vol. 11. Is. 5. P. 511–533. DOI:10.1111/j.1475-3995.2004.00474.x
  59. Jin Z., Ito T., Ohno K. The three-dimensional bin packing problem and its practical algorithm // JSME International Journal Series C - Mechanical Systems, Machine Elements and Manufacturing. 2003. Vol. 46. Is. 1. P. 60 – 66. DOI:10.1299/jsmec.46.60
  60. Fekete S.P., Schepers J. A new exact algorithm for general orthogonal d-dimensional knapsack problems // Conference: European Symposium on Algorithms. (5th Annual European Symposium Graz, Austria, September 15–17, 1997) Proceedings. Berlin: Springer-Heidelberg. 1997. P. 144 – 156. DOI: 10.1007/3-540-63397-9_12
  61. Fekete S.P., Schepers J. A combinatorial characterization of higher-dimensional orthogonal packing // Mathematics of Operations Research. 2004. Vol. 29. Is. 2. P. 353–368.
  62. Crainic T.G., Perboli G., Tadei R. TS2PACK: a two-level tabu search for the three-dimensional bin packing problem // European Journal of Operational Research. 2009. Vol. 195. Is. 3.P. 744–760. doi:10.1016/j.ejor.2007.06.063
  63. Farøe O., Pisinger D., Zachariasen M. Guided local search for the three-dimensional bin-packing problem // INFORMS Journal on Computing. 2003. Vol. 15. Is. 3. P. 267–283.
  64. Faina L. A global optimization algorithm for the three-dimensional packing problem // European Journal of Operational Research. 2000. Vol. 126. Is. 2. P. 340– 354. doi:10.1016/S0377-2217(99)00292-1
  65. Takahara S. A simple meta-heuristic approach for the multiple container loading problem // Browse Conference Publications. (Systems, Man and Cybernetics. 8-11 Oct. 2006. Taipei). IEEE International Conference on Systems, Man and Cybernetics. 2006. Vol. 3. P. 2328–2333. DOI: 10.1109/ICSMC.2006.385210
  66. Takahara S. A multi-start local search approach to the multiple container loading problem // Greedy Algorithms / Witold Bednorz. Vienna: IN-TECH. 2008. 586 р. Ch. 4. P. 55–68. DOI: 10.5772/6358
  67. Mohanty B.B., Mathur K., Ivancic N.J. Value considerations in three-dimensional packing: a heuristic procedure using the fractional knapsack problem // European Journal of Operational Research. 1994. Vol. 74. Is. 1. P. 143 – 151. doi:10.1016/0377-2217(94)90212-7
  68. Ivancic N.J., Mathur K., Mohanty B.B. An integer programming based heuristic approach to the three-dimensional packing problem // Journal of Manufacturing and Operations Management. 1989. Vol. 2. Is. 4. P. 268–298.
  69. Bortfeldt A. Eine Heuristik für Multiple Containerladeprobleme // OR Spektrum. 2000. Vol. 22. Is. 2. P. 239–261. DOI: 10.1007/s002910050104
  70. Zhu W., Huang W., Lim A. A prototype column generation strategy for the multiple container loading problem // European Journal of Operational Research. 2012. Vol. 223. Is. 1. P. 27–39. doi:10.1016/j.ejor.2012.05.039
  71. Che C. H., Huang W., Lim A., Zhu W. The multiple container loading cost minimization problem // European Journal of Operational Research. 2011. Vol. 214. Is. 3. P. 501–511. doi:10.1016/j.ejor.2011.04.017
  72. Chen C.S., Lee S.M., Shen Q.S. An analytical model for the container loading problem // European Journal of Operational Research. 1995. Vol. 80. Is. 1. P. 68–76. doi:10.1016/0377-2217(94)00002-T
  73. Padberg M. Packing small boxes into a big box // Mathematical Methods of Operations Research. 2000. Vol. 52. Is. 1. P. 1–21. DOI: 10.1007/s001860000066
  74. Allen S.D., Burke E.K., Mareček J. A space-indexed formulation of packing boxes into a larger box // Operations Research Letters. 2012. Vol. 40. Is. 1. P. 20–24. DOI:10.1016/j.orl.2011.10.008
  75. Hifi M., Kacem I., Nègre S., Wu L. A linear programming approach for the three-dimensional bin-packing problem // Electronic Notes in Discrete Mathematics. 2010. Vol. 36. P. 993–1000. doi:10.1016/j.endm.2010.05.126
  76. Junqueira L., Morabito R., Yamashita D.S. MIP-based approaches for the container loading problem with multi-drop constraints // Annals of Operations Research. 2012. Vol. 199. Is. 1. P. 51–75. DOI:10.1007/s10479-011-0942-z
  77. Hifi M. Approximate algorithms for the container loading problem // International Transactions in Operational Research. 2002. Vol. 9. Is. 6. P. 747–774. DOI:10.1111/1475-3995.00386
  78. Christensen S.G., Rousøe D.M. Container loading with multi-drop constraints // International Transactions in Operational Research. 2009. Vol. 16. Is. 6. P. 727– 743. DOI:10.1111/j.1475-3995.2009.00714.x
  79. Kang K., Moon I., Wang H. A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem // Applied Mathematics and Computation. 2012. Vol. 219. Is. 3. P. 1287–1299. doi:10.1016/j.amc.2012.07.036
  80. Burke E.K., Hyde M.R., Kendall G., Woodward J. Automating the packing heuristic design process with genetic programming // Evolutionary Computation. 2012. Vol. Is. 1. 20. P. 63–89. DOI: 10.1162/EVCO_a_00044
  81. Chien C.F., Wu W.T. A framework of modularized heuristics for determining the container loading patterns // Computers & Industrial Engineering. 1999. Vol. 37. Is. 1–2. P. 339–342. doi:10.1016/S0360-8352(99)00088-1
  82. Liu W.Y., Lin C.C., Yu C.S. On the three-dimensional container packing problem under home delivery service // Asia-Pacific Journal of Operational Research. 2011. Vol. 28. Is. 5. P. 601–621. DOI: 10.1142/S0217595911003466
  83. Lim A., Zhang X. The container loading problem // Proceedings of the 2005 ACM Symposium on Applied Computing (SAC). (Santa Fe, New Mexico, USA, March 13-17, 2005). ACM New York, NY, USA. 2005. P. 913–917. DOI: 10.1145/1066677.1066888
  84. Lin J.L., Foote B., Pulat S., Chang C.H., Cheung J.Y. Hybrid genetic algorithm for container packing in three dimensions // Proceedings of the Ninth Conference on Artificial Intelligence for Applications. (1-5 Mar, Orlando, FL, 1993). IEEE Computer Society Press, Orlando. 1993. P. 353–359. DOI: 10.1109/CAIA.1993.366589
  85. Yeh J.M., Lin Y.C., Yi S. Applying genetic algorithms and neural networks to the container loading problem // Journal of Information and Optimization Sciences. 2003. Vol. 24. Is. 3. 423–443. DOI: 10.1080/02522667.2003.10699576
  86. Liang S.C., Lee C.Y., Huang S.W. A hybrid meta-heuristic for the container loading problem // Communications of the International Information Management Association. 2007. Vol. 7. Is. 4. P. 73–84.
  87. Hasni H., Sabri H. On a hybrid genetic algorithm for solving the container loading problem with no orientation constraints // Journal of Mathematical Modelling and Algorithms in Operations Research. 2013. Vol. 12. Is. 1. P. 67 – 84. DOI:10.1007/s10852-012-9179-3
  88. Fanslau T., Bortfeldt A. A tree search algorithm for solving the container loading problem // INFORMS Journal on Computing. 2010. Vol. 22. Is. 2. P. 222 – 235.
  89. Fekete S.P., Schepers J., van der Veen J.C. An exact algorithm for higher-dimensional orthogonal packing // Operations Research. 2007. Vol. 55. Is. 3. P. 569– 587.
  90. Junqueira L., Morabito R., Yamashita D.S. Three-dimensional container loading models with cargo stability and load bearing constraints // Computers & Operations Research. 2012. Vol. 39. Is.1. P. 74–85. doi:10.1016/j.cor.2010.07.017
  91. De Castro Silva J.L., Soma N.Y., Maculan N. A greedy search for the three-dimensional bin packing problem: the packing static stability case // International Transactions in Operational Research. 2003. Vol. 10. Is. 2. P. 141–153. DOI:10.1111/1475-3995.00400
  92. Thapatsuwan P., Pongcharoen P., Hicks C., Chainate W. Development of a stochastic optimisation tool for solving the multiple container packing problems // International Journal of Production Economics. 2012. Vol. 140. Is. 2. P. 737–748. doi:10.1016/j.ijpe.2011.05.012
  93. De Almeida A., Figueiredo M.B. A particular approach for the three-dimensional packing problem with additional constraints // Computers & Operations Research. 2010. Vol. 37. Is.11. P. 1968–1976. doi:10.1016/j.cor.2010.01.010
  94. Soak S.M., Lee S.W., Yeo G.T., Jeon M.G. An effective evolutionary algorithm for the multiple container packing problem // Progress in Natural Science. 2008. Vol. 18. Is. 3. P. 337–344. doi:10.1016/j.pnsc.2007.11.007
  95. Kang M.K., Jang C.S., Yoon K.S. Heuristics with a new block strategy for the single and multiple containers loading problems // Journal of the Operational Research Society. 2010. Vol. 61. Is. 1. P. 95–107. DOI: 10.1057/jors.2008.120
  96. Sciomachen A., Tanfani E. A 3D-BPP approach for optimising stowage plans and terminal productivity // European Journal of Operational Research. 2007. Vol. 183. Is. 3. P. 1433–1446. doi:10.1016/j.ejor.2005.11.067
  97. Miyazawa F.K., Wakabayashi Y. Three-dimensional packings with rotations // Computers & Operations Research. 2009. Vol. 36. Is. 10. P. 2801–2815. doi:10.1016/j.cor.2008.12.015
  98. Amossen R.R., Pisinger D. Multi-dimensional bin packing problems with guillotine constraints // Computers & Operations Research. 2010. Vol. 37. Is. 11. P. 1999–2006. doi:10.1016/j.cor.2010.01.017
  99. Epstein L., Levy M. Dynamic multi-dimensional bin packing // Journal of Discrete Algorithms. 2010. Vol. 8. Is. 4. P. 356–372. doi:10.1016/j.jda.2010.07.002
  100. Lodi A., Martello S., Vigo D. TSpack: a unified tabu search code for multi-dimensional bin packing problems // Annals of Operations Research. 2004. Vol. 131. Is. 1-4. P. 203–213. DOI: 10.1023/B:ANOR.0000039519.03572.08
  101. Boschetti M.A. New lower bounds for the three-dimensional finite bin packing problem // Discrete Applied Mathematics. 2004. Vol. 140. Is. 1-3. P. 241–258. doi:10.1016/j.dam.2003.08.004
  102. Brunetta L., Gr´egoire P. A general purpose algorithm for three-dimensional packing // INFORMS Journal on Computing. 2005. Vol. 17. Is. 3. P. 328–338.
  103. Ceschia S., Schaerf A. Local search for a multi-drop multi-container loading problem // Journal of Heuristics. 2013. Vol. 19. Is. 2. P. 275–294. DOI:10.1007/s10732-011-9162-6



Тематические рубрики:
Поделиться:
 
ПОИСК
 
elibrary crossref neicon rusycon
 
ЮБИЛЕИ
ФОТОРЕПОРТАЖИ
 
СОБЫТИЯ
 
НОВОСТНАЯ ЛЕНТА



Авторы
Пресс-релизы
Библиотека
Конференции
Выставки
О проекте
Rambler's Top100
Телефон: +7 (499) 263-69-71
  RSS
© 2003-2019 «Инженерный вестник» Тел.: +7 (499) 263-69-71